ﻻ يوجد ملخص باللغة العربية
Great efforts have been made to the investigation of defects in silicon carbide for their attractive optical and spin properties. However, most of the researches are implemented at low and room temperature. Little is known about the spin coherent property at high temperature. Here, we experimentally demonstrate coherent control of divacancy defect spins in silicon carbide above 550 K. The spin properties of defects ranging from room temperature to 600 K are investigated, in which the zero-field-splitting is found to have a polynomial temperature dependence and the spin coherence time decreases as the temperature increases. Moreover, as an example of application, we demonstrate a thermal sensing using the Ramsey method at about 450 K. Our experimental results would be useful for the investigation of high temperature properties of defect spins and silicon carbide-based broad-temperature range quantum sensing.
Recently, vacancy-related spin defects in silicon carbide (SiC) have been demonstrated to be potentially suitable for versatile quantum interface building and scalable quantum network construction. Significant efforts have been undertaken to identify
Solid-state color centers with manipulatable spin qubits and telecom-ranged fluorescence are ideal platforms for quantum communications and distributed quantum computations. In this work, we coherently control the nitrogen-vacancy (NV) center spins i
Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond, or individual phosphorous dopants in silicon have shown spectacular progress but either miss established nanotechnology or an efficient sp
Defect spins in silicon carbide have become promising platforms with respect to quantum information processing and quantum sensing. Indeed, the optically detected magnetic resonance (ODMR) of defect spins is the cornerstone of the applications. In th
Divacancy defects in silicon carbide have long-lived electronic spin states and sharp optical transitions, with properties that are similar to the nitrogen-vacancy defect in diamond. We report experiments on 4H-SiC that investigate all-optical addres