ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity of platinum hydride

126   0   0.0 ( 0 )
 نشر من قبل Takahiro Matsuoka
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the ac magnetic susceptibility, electrical resistance, and X-ray diffraction measurements of platinum hydride (PtHx) in diamond anvil cells, which reveal its superconducting transition. At 32 GPa, when PtHx is in a P63/mmc structure, PtHx exhibits superconducting transition at 6.7 K and superconducting transition temperature (Tc) decreases with pressure to 4.8 K at 36 GPa. The observed T c is higher than that of powdered Pt by more than three orders of magnitude. It is suggested that hydrides of noble metals have higher Tc than the elements.



قيم البحث

اقرأ أيضاً

324 - Christoph Heil 2019
We report ab-initio calculations of the superconducting properties of two high-Tc sodalite-like clathrate yttrium hydrides, YH6 and YH10, within the fully anisotropic ME theory, including Coulomb corrections. For both compounds we find almost isotrop ic superconducting gaps, resulting from a uniform distribution of the electron-phonon coupling over phonon modes and electronic states of mixed Y and H character. The Coulomb screening is rather weak, resulting in a Morel-Anderson pseudopotential mu*= 0:11, at odds with claims of unusually large Tc in lanthanum hydrides. The corresponding critical temperatures at 300 GPa exceed room temperature (Tc = 290 K and 310 K for YH6 and YH10), in agreement with a previous isotropic-gap calculation. The different response of these two compounds to external pressure, along with a comparison to low-Tc superconducting YH3, may inspire strategies to improve the superconducting properties of this class of hydrides.
Noble metals adopt close-packed structures at ambient pressure and rarely undergo structural transformation at high pressures. Platinum (Pt), in particular, is normally considered to be unreactive and is therefore not expected to form hydrides under pressure. We predict that platinum hydride (PtH) has a lower enthalpy than its constituents solid Pt and molecular hydrogen at pressures above 21.5 GPa. We have calculated structural phase transitions from tetragonal to hexagonal close-packed or face-centered cubic (fcc) PtH between 70 and 80 GPa. Linear response calculations indicate that PtH is a superconductor at these pressures with a critical temperature of about 10--25 K. These findings help to shed light on recent observations of pressure-induced metallization and superconductivity in hydrogen-rich materials. We show that formation of fcc metal hydrides under pressure is common among noble metal hydrides and examine the possibility of superconductivity in these materials.
A recent report that sulfur hydride under pressure is an electron-phonon superconductor with a Tc of 190 K has been met with much excitement although it is yet to be confirmed. Based on several electron-phonon spectral density functions already avail able from density functional theory, we find that the electron-phonon spectrum is near optimum for Tc with a particularly large value of its characteristic phonon energy omega_ln which is due to the small hydrogen mass. We find that the thermodynamic universal BCS ratios are near those for Pb and Nb3Sn. We suggest that optical measurements could be a useful tool to establish the existence and nature of the superconductivity in this system. Conventional superconductors are in the impurity-dominated dirty limit. By contrast sulfur hydride will be in the clean limit because of its large energy gap scale. The AC optical conductivity will display distinct and separate signatures of the superconducting gap in the low-energy impurity-dominated range of the optical spectrum and additional phonon structures at higher energies where the clean limit applies.
Single crystals of SrFe2-xPtxAs2 (0 < x < 0.36) were grown using the self flux solution method and characterized using x-ray crystallography, electrical transport, magnetic susceptibility, and specific heat measurements. The magnetic/structural trans ition is suppressed with increasing Pt concentration, with superconductivity seen over the range 0.08 < x < 0.36 with a maximum transition temperature Tc of 16 K at x = 0.16. The shape of the phase diagram and the changes to the lattice parameters are similar to the effects of other group VIII elements Ni and Pd, however the higher transition temperature and extended range of superconductivity suggest some complexity beyond the simple electron counting picture that has been discussed thus far.
This article reports the experimentally clarified crystal structure of a recently discovered sulfur hydride in high temperature superconducting phase which has the highest critical temperature Tc over 200 K which has been ever reported. For understan ding the mechanism of the high superconductivity, the information of its crystal structure is very essential. Herein we have carried out the simultaneous measurements electrical resistance and synchrotron x-ray diffraction under high pressure, and clearly revealed that the hydrogen sulfide, H2S, decomposes to H3S and its crystal structure has body-centered cubic symmetry in the superconducting phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا