ﻻ يوجد ملخص باللغة العربية
We calculate the frequency-dependent shot noise in the edge states of a two-dimensional topological insulator coupled to a magnetic impurity with spin $S=1/2$ of arbitrary anisotropy. If the anisotropy is absent, the noise is purely thermal at low frequencies, but tends to the Poissonian noise of the full current $I$ at high frequencies. If the interaction only flips the impurity spin but conserves those of electrons, the noise at high voltages $eVgg T$ is frequency-independent. Both the noise and the backscattering current $I_{bs}$ saturate at voltage-independent values. Finally, if the Hamiltonian contains all types of non-spin-conserving scattering, the noise at high voltages becomes frequency-dependent again. At low frequencies, its ratio to $2eI_{bs}$ is larger than 1 and may reach 2 in the limit $I_{bs}to 0$. At high frequencies it tends to 1.
This is the reply to the comment by I. S. Burmistrov, P. D. Kurilovich, and V. D. Kurilovich [arXiv:1903.047241] on our paper Noise in the helical edge channel anisotropically coupled to a local spin [JETP Lett. 108, 664 (2018), arXiv:1810.05831].
Edge states of two-dimensional topological insulators are helical and single-particle backscattering is prohibited by time-reversal symmetry. In this work, we show that an isotropic exchange coupling of helical edge states (HES) to a spin 1/2 impurit
An infinite edge of a quantum Hall system prohibits indirect exchange coupling between two spins whereas a quantum spin-Hall edge prohibits out-of-plane coupling. In this study we analyze an unexpected breakdown of this behaviors in a finite system,
Magnetic impurities with sufficient anisotropy could account for the observed strong deviation of the edge conductance of 2D topological insulators from the anticipated quantized value. In this work we consider such a helical edge coupled to dilute i
The interaction of a magnetic insulator with the helical electronic edge of a two-dimensional topological insulator has been shown to lead to many interesting phenomena. One of these is that for a suitable orientation of the magnetic anisotropy axis,