ترغب بنشر مسار تعليمي؟ اضغط هنا

The Measurement Problem Is the Measurement Problem

118   0   0.0 ( 0 )
 نشر من قبل Arne Hansen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The term measurement in quantum theory (as well as in other physical theories) is ambiguous: It is used to describe both an experience - e.g., an observation in an experiment - and an interaction with the system under scrutiny. If doing physics is regarded as a creative activity to develop a meaningful description of the world, then one has to carefully discriminate between the two notions: An observers account of experience - consitutive to meaning - is hardly expressed exhaustively by the formal framework of an interaction within one particular theory. We develop a corresponding perspective onto central terms in quantum mechanics in general, and onto the measurement problem in particular.



قيم البحث

اقرأ أيضاً

Recently, it has been stated that single-world interpretations of quantum theory are logically inconsistent. The claim is derived from contradicting statements of agents in a setup combining two Wigners-friend experiments. Those statements stem from applying the measurement-update rule subjectively, i.e., only for the respective agents own measurement. We argue that the contradiction expresses the incompatibility of collapse and unitarity - resulting in different formal descriptions of a measurement - and does not allow to dismiss any specific interpretation of quantum theory.
260 - Arne Hansen , Stefan Wolf 2019
Can normal science-in the Kuhnian sense-add something substantial to the discussion about the measurement problem? Does an extended Wigners-friend Gedankenexperiment illustrate new issues? Or a new quality of known issues? Are we led to new interpret ations, new perspectives, or do we iterate the previously known? The recent debate does, as we argue, neither constitute a turning point in the discussion about the measurement problem nor fundamentally challenge the legitimacy of quantum mechanics. Instead, the measurement problem asks for a reflection on fundamental paradigms of doing physics.
When two spatially separated parties make measurements on an unknown entangled quantum state, what correlations can they achieve? How difficult is it to determine whether a given correlation is a quantum correlation? These questions are central to pr oblems in quantum communication and computation. Previous work has shown that the general membership problem for quantum correlations is computationally undecidable. In the current work we show something stronger: there is a family of constant-sized correlations -- that is, correlations for which the number of measurements and number of measurement outcomes are fixed -- such that solving the quantum membership problem for this family is computationally impossible. Thus, the undecidability that arises in understanding Bell experiments is not dependent on varying the number of measurements in the experiment. This places strong constraints on the types of descriptions that can be given for quantum correlation sets. Our proof is based on a combination of techniques from quantum self-testing and from undecidability results of the third author for linear system nonlocal games.
Dynamical reduction models propose a solution to the measurement problem in quantum mechanics: the collapse of the wave function becomes a physical process. We compute the predictions to decaying and Dynamical reduction models propose a solution to t he measurement problem in quantum mechanics: the collapse of the wave function becomes a physical process. We compute the predictions to decaying and flavor--oscillating neutral mesons for the two most promising collapse models, the QMUPL (Quantum Mechanics with Universal Position Localization) model and the mass-proportional CSL (Continuous Spontaneous Localization) model. Our results are showing (i) a strong sensitivity to the very assumptions of the noise field underlying those two collapse models and (ii) under particular assumptions the CSL case allows even to recover the decay dynamics. This in turn allows to predict the effective collapse rates solely based on the measured values for the oscillation (mass differences) and the measured values of the decay constants. The four types of neutral mesons ($K$-meson, $D$-meson, $B_d$-meson, $B_s$-meson) lead surprisingly to ranges comparable to those put forward by Adler (2007) and Ghirardi-Rimini-Weber (1986). Our results show that these systems at high energies are very sensitive to possible modifications of the standard quantum theory making them a very powerful laboratory to rule out certain collapse scenarios and studying the detailed physical processes solving the measurement problem.
We find that the Measurement Based Quantum Computing (MBQC) search algorithm on an unsorted list is not the same as Grovers search algorithm (GSA).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا