ﻻ يوجد ملخص باللغة العربية
We examine the spectra of 23 fast radio bursts detected in a flys-eye survey with the Australian SKA Pathfinder, including those of three bursts not previously reported. The mean spectral index of $alpha = -1.6_{-0.2}^{+0.3}$ ($F_ u propto u^alpha$) is close to that of the Galactic pulsar population. The sample is dominated by bursts exhibiting a large degree of spectral modulation: 17 exhibit fine-scale spectral modulation with an rms exceeding 50% of the mean, with decorrelation bandwidths (half-maximum) ranging from $approx$ to 49 MHz. Most decorrelation bandwidths are an order of magnitude lower than the $gtrsim 30,$MHz expected of Galactic interstellar scintillation at the Galactic latitude of the survey, $|b| = 50 pm 5 deg$. A test of the amplitude distribution of the spectral fluctuations reveals only 12 bursts consistent at better than a 5% confidence level with the prediction of 100%-modulated diffractive scintillation. Moreover, five of six FRBs with a signal-to-noise ratio exceeding 18 are consistent with this prediction at less than 1% confidence. Nonetheless, there is weak evidence (88-95% confidence) that the amplitude of the fine-scale spectral modulation is anti-correlated with dispersion measure (DM) that would suggest it originates as a propagation effect. This effect appears to be corroborated by the smoothness of the higher-DM Parkes FRBs, and could arise due to quenching of diffractive scintillation (e.g. in the interstellar medium of the host galaxy) by angular broadening in the intergalactic medium.
Fast Radio Bursts (FRBs) are radio transients of an unknown origin. Naturally, we are curious as to their nature. Enough FRBs have been detected for a statistical approach to parts of this challenge to be feasible. To understand the crucial link betw
The observed Fast Radio Burst (FRB) population can be divided into one-off and repeating FRB sources. Either this division is a true dichotomy of the underlying sources, or selection effects and low activity prohibit us from observing repeat pulses f
We present results of the coordinated observing campaign that made the first subarcsecond localization of a Fast Radio Burst, FRB 121102. During this campaign, we made the first simultaneous detection of an FRB burst by multiple telescopes: the VLA a
We consider a sample of $82$ non-repeating FRBs detected at Parkes, ASKAP, CHIME and UTMOST each of which operates over a different frequency range and has a different detection criteria. Using simulations, we perform a maximum likelihood analysis to
We present here a detailed X-ray spectral analysis of the AGN belonging to the XMM-Newton bright survey (XBS) that comprises more than 300 AGN up to redshift ~ 2.4. We performed an X-ray analysis following two different approaches: by analyzing indiv