ﻻ يوجد ملخص باللغة العربية
We report on a verification of the Fundamental Theorem of Algebra in ACL2(r). The proof consists of four parts. First, continuity for both complex-valued and real-valued functions of complex numbers is defined, and it is shown that continuous functions from the complex to the real numbers achieve a minimum value over a closed square region. An important case of continuous real-valued, complex functions results from taking the traditional complex norm of a continuous complex function. We think of these continuous functions as having only one (complex) argument, but in ACL2(r) they appear as functions of two arguments. The extra argument is a context, which is uninterpreted. For example, it could be other arguments that are held fixed, as in an exponential function which has a base and an exponent, either of which could be held fixed. Second, it is shown that complex polynomials are continuous, so the norm of a complex polynomial is a continuous real-valued function and it achieves its minimum over an arbitrary square region centered at the origin. This part of the proof benefits from the introduction of the context argument, and it illustrates an innovation that simplifies the proofs of classical properties with unbound parameters. Third, we derive lower and upper bounds on the norm of non-constant polynomials for inputs that are sufficiently far away from the origin. This means that a sufficiently large square can be found to guarantee that it contains the global minimum of the norm of the polynomial. Fourth, it is shown that if a given number is not a root of a non-constant polynomial, then it cannot be the global minimum. Finally, these results are combined to show that the global minimum must be a root of the polynomial. This result is part of a larger effort in the formalization of complex polynomials in ACL2(r).
This survey is meant to provide an introduction to the fundamental theorem of linear algebra and the theories behind them. Our goal is to give a rigorous introduction to the readers with prior exposure to linear algebra. Specifically, we provide some
This volume contains a selection of papers presented at the 16th International Workshop on the ACL2 Theorem Prover and its Applications (ACL2-2020). The workshops are the premier technical forum for presenting research and experiences related to ACL2.
This note is devoted to two classical theorems: the open mapping theorem for analytic functions (OMT) and the fundamental theorem of algebra (FTA). We present a new proof of the first theorem, and then derive the second one by a simple topological ar
Iterative algorithms are traditionally expressed in ACL2 using recursion. On the other hand, Common Lisp provides a construct, loop, which -- like most programming languages -- provides direct support for iteration. We describe an ACL2 analogue loop$
A perfect number is a positive integer n such that n equals the sum of all positive integer divisors of n that are less than n. That is, although n is a divisor of n, n is excluded from this sum. Thus 6 = 1 + 2 + 3 is perfect, but 12 < 1 + 2 + 3 + 4