ﻻ يوجد ملخص باللغة العربية
Arbitrary amplitude dust acoustic solitary structures have been investigated in a four component multi-species plasma consisting of negatively charged dust grains, nonthermal ions, isothermally distributed electrons and positrons including the effect of dust temperature. We have used the Sagdeev pseudo-potential method to discuss the arbitrary amplitude steady state dust acoustic solitary structures in the present plasma system. We have designed a computational scheme to draw the existence domains of different dust acoustic solitary structures. We have observed only negative potential solitary waves for isothermal ions. But for strong nonthermality of ions the system supports positive potential solitary waves, positive potential double layers and coexistence of solitary waves of both polarities. The positive potential solitary waves are restricted by the positive potential double layers but negative potential double layer has not been found for any parameter regime. The system does not support dust acoustic supersoliton of any polarity. The concentration of positrons plays an important role in the formation of positive potential double layers. Finally, the phase portraits of the dynamical system have been presented to confirm the existence of different dust acoustic solitary structures.
The purpose of this paper is to extend the recent work of Paul & Bandyopadhyay [Astrophys. Space Sci. 361, 172(2016)] on the existence of different dust ion acoustic solitary structures in an unmagnetized collisionless dusty plasma consisting of nega
The Sagdeev pseudo-potential technique and the analytic theory developed by Das et al. [J. Plasma Phys. 78, 565 (2012)] have been used to investigate the dust ion acoustic solitary structures at the acoustic speed in a collisionless unmagnetized dust
Employing the Sagdeev pseudo-potential technique the ion acoustic solitary structures have been investigated in an unmagnetized collisionless plasma consisting of adiabatic warm ions, nonthermal electrons and isothermal positrons. The qualitatively d
We have used the Sagdeev pseudo-potential technique to investigate the arbitrary amplitude ion acoustic solitons, double layers and supersolitons in a collisionless magnetized plasma consisting of adiabatic warm ions, isothermal cold electrons and no
Sardar et al. [Phys. Plasmas 23, 073703 (2016)] have studied the stability of small amplitude dust ion acoustic solitary waves in a collisionless unmagnetized electron - positron - ion - dust plasma. They have derived a Kadomtsev Petviashvili (KP) eq