ترغب بنشر مسار تعليمي؟ اضغط هنا

Autonomous on-board data processing and instrument calibration software for the SO/PHI

303   0   0.0 ( 0 )
 نشر من قبل Kinga Albert
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The extension of on-board data processing capabilities is an attractive option to reduce telemetry for scientific instruments on deep space missions. The challenges that this presents, however, require a comprehensive software system, which operates on the limited resources a data processing unit in space allows. We implemented such a system for the Polarimetric and Helioseismic Imager (PHI) on-board the Solar Orbiter (SO) spacecraft. It ensures autonomous operation to handle long command-response times, easy changing of the processes after new lessons have been learned and meticulous book-keeping of all operations to ensure scientific accuracy. This contribution presents the requirements and main aspects of the software implementation, followed by an example of a task implemented in the software frame, and results from running it on SO/PHI. The presented example shows that the different parts of the software framework work well together, and that the system processes data as we expect. The flexibility of the framework makes it possible to use it as a baseline for future applications with similar needs and limitations as SO/PHI.



قيم البحث

اقرأ أيضاً

The Polarimetric and Helioseismic Imager (PHI) is the first deep-space solar spectropolarimeter, on-board the Solar Orbiter (SO) space mission. It faces: stringent requirements on science data accuracy, a dynamic environment, and severe limitations o n telemetry volume. SO/PHI overcomes these restrictions through on-board instrument calibration and science data reduction, using dedicated firmware in FPGAs. This contribution analyses the accuracy of a data processing pipeline by comparing the results obtained with SO/PHI hardware to a reference from a ground computer. The results show that for the analysed pipeline the error introduced by the firmware implementation is well below the requirements of SO/PHI.
107 - Luigi Pacciani 2012
The Scientific objectives of the LOFT mission, e.g., the study of the Neutron Star equation of state and of the Strong Gravity, require accurate energy, time and flux calibration for the 500k channels of the SDD detectors, as well as the knowledge of the detector dead-time and of the detector response with respect to the incident angle of the photons. We report here the evaluations made to asses the calibration issues for the LAD instrument. The strategies for both ground and on-board calibrations, including astrophysical observations, show that the goals are achievable within the current technologies.
The X and Gamma Imaging Spectrometer instrument on-board the THESEUS mission (selected by ESA in the framework of the Cosmic Vision M5 launch opportunity, currently in phase A) is based on a detection plane composed of several thousands of single act ive elements. Each element comprises a 4.5x4.5x30 mm 3 CsI(Tl) scintillator bar, optically coupled at both ends to Silicon Drift Detectors (SDDs). The SDDs acts both as photodetectors for the scintillation light and as direct X-ray sensors. In this paper the design of the XGIS detection plane is reviewed, outlining the strategic choices in terms of modularity and redundancy of the system. Results on detector-electronics prototypes are also described. Moreover, the design and development of the low-noise front-end electronics is presented, emphasizing the innovative architectural design based on custom-designed Application-Specific Integrated Circuits (ASICs).
Processing of raw data from modern astronomical instruments is nowadays often carried out using dedicated software, so-called pipelines which are largely run in automated operation. In this paper we describe the data reduction pipeline of the Multi U nit Spectroscopic Explorer (MUSE) integral field spectrograph operated at ESOs Paranal observatory. This spectrograph is a complex machine: it records data of 1152 separate spatial elements on detectors in its 24 integral field units. Efficiently handling such data requires sophisticated software, a high degree of automation and parallelization. We describe the algorithms of all processing steps that operate on calibrations and science data in detail, and explain how the raw science data gets transformed into calibrated datacubes. We finally check the quality of selected procedures and output data products, and demonstrate that the pipeline provides datacubes ready for scientific analysis.
The HIFI data processing pipeline was developed to systematically process diagnostic, calibration and astronomical observations taken with the HIFI science instrumentas part of the Herschel mission. The HIFI pipeline processed data from all HIFI obse rving modes within the Herschel automated processing environment, as well as, within an interactive environment. A common software framework was developed to best support the use cases required by the instrument teams and by the general astronomers. The HIFI pipeline was built on top of that and was designed with a high degree of modularity. This modular design provided the necessary flexibility and extensibility to deal with the complexity of batch-processing eighteen different observing modes, to support the astronomers in the interactive analysis and to cope with adjustments necessary to improve the pipeline and the quality of the end-products. This approach to the software development and data processing effort was arrived at by coalescing the lessons learned from similar research based projects with the understanding that a degree of foresight was required given the overall length of the project. In this article, both the successes and challenges of the HIFI software development process are presented. To support future similar projects and retain experience gained lessons learned are extracted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا