ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of nonlinear growth of the large-scale structure on CMB B-mode delensing

89   0   0.0 ( 0 )
 نشر من قبل Toshiya Namikawa
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the impact of the nonlinear growth of the large-scale structure (LSS) on the removal of the gravitational lensing effect (delensing) in cosmic microwave background (CMB) $B$ modes. The importance of the nonlinear growth of the LSS in the gravitational lensing analysis of CMB has been recently recognized by several works, while its impact on delensing is not yet explored. The delensing using mass-tracers such as galaxies and cosmic infrared background (CIB) could be also affected by the nonlinear growth. We find that the nonlinear growth of the LSS leads to $sim 0.3%$ corrections to $B$-mode spectrum after delensing with a high-$z$ mass tracer ($z_msim 2$) at $ell=1000$-$2000$. The off-diagonal correlation coefficients of the lensing $B$-mode template spectrum become significant for delensing with low-$z$ tracers ($z_mlesssim 0.5$), but are negligible with high-$z$ tracers (such as CIB). On the other hand, the power spectrum covariance of the delensed $B$ mode is not significantly affected by the nonlinear growth of the LSS, and the delensing efficiency is not significantly changed even if we use low-$z$ tracers. The CMB $B$-mode internal delensing is also not significantly affected by the nonlinear growth.



قيم البحث

اقرأ أيضاً

We present a demonstration of delensing the observed cosmic microwave background (CMB) B-mode polarization anisotropy. This process of reducing the gravitational-lensing generated B-mode component will become increasingly important for improving sear ches for the B modes produced by primordial gravitational waves. In this work, we delens B-mode maps constructed from multi-frequency SPTpol observations of a 90 deg$^2$ patch of sky by subtracting a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing potential map estimated from the $textit{Herschel}$ $500,mu m$ map of the CIB. We find that our delensing procedure reduces the measured B-mode power spectrum by 28% in the multipole range $300 < ell < 2300$; this is shown to be consistent with expectations from theory and simulations and to be robust against systematics. The null hypothesis of no delensing is rejected at $6.9 sigma$. Furthermore, we build and use a suite of realistic simulations to study the general properties of the delensing process and find that the delensing efficiency achieved in this work is limited primarily by the noise in the lensing potential map. We demonstrate the importance of including realistic experimental non-idealities in the delensing forecasts used to inform instrument and survey-strategy planning of upcoming lower-noise experiments, such as CMB-S4.
One of the main goals of Cosmology is to search for the imprint of primordial gravitational waves in the CMB polarisation field, to probe inflationary theories. One of the obstacles toward the detection of the primordial signal is to extract the B-mo de polarisation from astrophysical contaminations. We present a complete analysis of extragalactic foreground contamination due to polarised emission of radio and dusty star-forming galaxies. We update or use up-to-date models that are validated using the most recent measurements. We predict the flux limit (confusion noise) for the future CMB space or balloon experiments (IDS, PIPER, SPIDER, LiteBIRD, PICO), as well as ground-based experiments (C-BASS, NEXT-BASS, QUIJOTE, AdvACTPOL, BICEP3+Keck, BICEPArray, CLASS, SO, SPT3G, S4). Telescope aperture size (and frequency) is the main characteristic impacting the level of confusion noise. Using the flux limits and assuming constant polarisation fractions for radio and dusty galaxies, we compute the B-mode power spectra of the three extragalactic foregrounds (radio source shot noise, dusty galaxy shot noise and clustering), discuss their relative levels and compare their amplitudes to that of the primordial tensor modes parametrized by the tensor-to-scalar ratio r. At the reionization bump (l=5), contamination by extragalactic foregrounds is negligible. At the recombination peak (l=80), while the contamination is much lower than the targeted sensitivity on r for large-aperture telescopes, it is at comparable level for some of the medium- and small-aperture telescope experiments. For example, the contamination is at the level of the 68 per cent confidence level uncertainty on the primordial r for the LiteBIRD and PICO space experiments. Finally we also provide some useful unit conversion factors and give some predictions for the SPICA B-BOP experiment. Abridged
Magnetic fields are everywhere in nature and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large- scale structure. In this review we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cut off scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitude $B_lambda$ and the power spectral index $n_B$ which have been deduced from the available CMB observational data by using our computational framework.
We present a measurement of the $B$-mode polarization power spectrum of the cosmic microwave background (CMB) using taken from July 2014 to December 2016 with the POLARBEAR experiment. The CMB power spectra are measured using observations at 150 GHz with an instantaneous array sensitivity of $mathrm{NET}_mathrm{array}=23, mu mathrm{K} sqrt{mathrm{s}}$ on a 670 square degree patch of sky centered at (RA, Dec)=($+0^mathrm{h}12^mathrm{m}0^mathrm{s},-59^circ18^prime$). A continuously rotating half-wave plate is used to modulate polarization and to suppress low-frequency noise. We achieve $32,mumathrm{K}$-$mathrm{arcmin}$ effective polarization map noise with a knee in sensitivity of $ell = 90$, where the inflationary gravitational wave signal is expected to peak. The measured $B$-mode power spectrum is consistent with a $Lambda$CDM lensing and single dust component foreground model over a range of multipoles $50 leq ell leq 600$. The data disfavor zero $C_ell^{BB}$ at $2.2sigma$ using this $ell$ range of POLARBEAR data alone. We cross-correlate our data with Planck high frequency maps and find the low-$ell$ $B$-mode power in the combined dataset to be consistent with thermal dust emission. We place an upper limit on the tensor-to-scalar ratio $r < 0.90$ at 95% confidence level after marginalizing over foregrounds.
(abridged) We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the $Lambda$CDM model. To complement large-angle polarization, we consider the high-resolution CMB datasets from either WMAP or Planck, as well as CMB lensing as traced by Planck. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low-resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz data to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth $tau$, of order ~$2sigma$, robust to the choice of the complementary high-l dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find $tau = 0.066 ^{+0.012}_{-0.013}$, again very stable against the particular choice for high-$ell$ data. We find that the amplitude of primordial fluctuations $A_s$, notoriously degenerate with $tau$, is the parameter second most affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between $0.5$ and $1sigma$. In particular, cleaning dust with plancks 353 GHz data imposes a $1sigma$ downward shift in the value of the Hubble constant $H_0$, significantly contributing to the tension reported between CMB based and direct measurements of $H_0$. On the other hand, we find that the appearance of the so-called low $ell$ anomaly, a well-known tension between the high- and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-$ell$ dataset employed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا