ﻻ يوجد ملخص باللغة العربية
This paper is devoted to semiclassical estimates of the eigenvalues of the Pauli operator on a bounded open set whose boundary carries Dirichlet conditions. Assuming that the magnetic field is positive and a few generic conditions, we establish the simplicity of the eigenvalues and provide accurate asymptotic estimates involving Segal-Bargmann and Hardy spaces associated with the magnetic field.
The spectrum of the non-self-adjoint Zakharov-Shabat operator with periodic potentials is studied, and its explicit dependence on the presence of a semiclassical parameter in the problem is also considered. Several new results are obtained. In partic
In this article, we consider the semiclassical Schrodinger operator $P = - h^{2} Delta + V$ in $mathbb{R}^{d}$ with confining non-negative potential $V$ which vanishes, and study its low-lying eigenvalues $lambda_{k} ( P )$ as $h to 0$. First, we giv
We give sufficient conditions for the presence of the absolutely continuous spectrum of a Schrodinger operator on a regular rooted tree without loops (also called regular Bethe lattice or Cayley tree).
In this paper we address the problem of determining whether the eigenspaces of a class of weighted Laplacians on Cayley graphs are generically irreducible or not. This work is divided into two parts. In the first part, we express the weighted Laplaci
We consider the spectrum of the almost Mathieu operator $H_alpha$ with frequency $alpha$ and in the case of the critical coupling. Let an irrational $alpha$ be such that $|alpha-p_n/q_n|<c q_n^{-varkappa}$, where $p_n/q_n$, $n=1,2,dots$ are the conve