ﻻ يوجد ملخص باللغة العربية
We investigate the advantages of extracting the degree of entanglement in bipartite systems directly from tomograms, as it is the latter that are readily obtained from experiments. This would provide a superior alternative to the standard procedure of assessing the extent of entanglement between subsystems after employing the machinery of state reconstruction from the tomogram. The latter is both cumbersome and involves statistical methods, while a direct inference about entanglement from the tomogram circumvents these limitations. In an earlier paper, we had identified a procedure to obtain a bipartite entanglement indicator directly from tomograms. To assess the efficacy of this indicator, we now carry out a detailed investigation using two nonlinear bipartite models by comparing this tomographic indicator with standard markers of entanglement such as the subsystem linear entropy and the subsystem von Neumann entropy and also with a commonly-used indicator obtained from inverse participation ratios. The two model systems selected for this purpose are a multilevel atom interacting with a radiation field, and a double-well Bose-Einstein condensate. The role played by the specific initial states of these two systems in the performance of the tomographic indicator is also examined. Further, the efficiency of the tomographic entanglement indicator during the dynamical evolution of the system is assessed from a time-series analysis of the difference between this indicator and the subsystem von Neumann entropy.
We discuss the relation between fermion entanglement and bipartite entanglement. We first show that an exact correspondence between them arises when the states are constrained to have a definite local number parity. Moreover, for arbitrary states in
Extensive theoretical and experimental investigations on multipartite systems close to an avoided energy-level crossing reveal interesting features such as the extremisation of entanglement. Conventionally, the estimation of entanglement directly fro
We consider a non-interacting bipartite quantum system $mathcal H_S^Aotimesmathcal H_S^B$ undergoing repeated quantum interactions with an environment modeled by a chain of independant quantum systems interacting one after the other with the bipartit
The most general quantum object that can be shared between two distant parties is a bipartite channel, as it is the basic element to construct all quantum circuits. In general, bipartite channels can produce entangled states, and can be used to simul
We investigate the features of the entanglement spectrum (distribution of the eigenvalues of the reduced density matrix) of a large quantum system in a pure state. We consider all Renyi entropies and recover purity and von Neumann entropy as particul