ﻻ يوجد ملخص باللغة العربية
We applied an effective approximation into Maxwells equations with an axion interaction for haloscope searches. A set of Maxwells equations acquired from this approximation describes just the reacted fields generated by the anomalous interaction. Unlike other approaches, this set of Maxwells equations inherently satisfies the boundary conditions for haloscope searches. The electromagnetic field solutions from the Maxwells equations were evaluated for both cylindrical and toroidal cavity geometries including when the axion mass becomes ultra-light (sub-meV). A small but non-zero difference between the electric and magnetic stored energies appeared in both cases. The difference may come from an anomalous non-dissipating current induced by oscillating axions.
We generalize the recently proposed $mathcal{PT}$-symmetric axion haloscope to a larger array with more $mathcal{PT}$-symmetric structures. The optimized signal-to-noise ratio (SNR) has a greater enhancement, as well as the signal power. Furthermore,
We discuss the physics case for and the concept of a medium-scale axion helioscope with sensitivities in the axion-photon coupling a few times better than CERN Axion Solar Telescope (CAST). Search for an axion-like particle with these couplings is mo
A ferromagnetic axion haloscope searches for Dark Matter in the form of axions by exploiting their interaction with electronic spins. It is composed of an axion-to-electromagnetic field transducer coupled to a sensitive rf detector. The former is a p
We present the first results of a search for invisible axion dark matter using a multiple-cell cavity haloscope. This cavity concept was proposed to provide a highly efficient approach to high mass regions compared to the conventional multiple-cavity
Many existing and proposed experiments targeting QCD axion dark matter (DM) can also search for a broad class of axion-like particles (ALPs). We analyze the experimental sensitivities to electromagnetically-coupled ALP DM in different cosmological sc