ﻻ يوجد ملخص باللغة العربية
Linear-optical systems can implement photonic quantum walks that simulate systems with nontrivial topological properties. Here, such photonic walks are used to jointly entangle polarization and winding number. This joint entanglement allows information processing tasks to be performed with interactive access to a wide variety of topological features. Topological considerations are used to suppress errors, with polarization allowing easy measurement and manipulation of qubits. We provide three examples of this approach: production of two-photon systems with entangled winding number (including topological analogs of Bell states), a topologically error-protected optical memory register, and production of entangled topologicallyprotected boundary states. In particular it is shown that a pair of quantum memory registers, entangled in polarization and winding number, with topologically-assisted error suppression can be made with qubits stored in superpositions of winding numbers; as a result, information processing with winding number-based qubits is a viable possibility.
Quantum control of large spin registers is crucial for many applications ranging from spectroscopy to quantum information. A key factor that determines the efficiency of a register for implementing a given information processing task is its network t
Quantum entanglement, as the strictly non-classical phenomena, is the kernel of quantum computing and quantum simulation, and has been widely applied ranging from fundamental tests of quantum physics to quantum information processing. The decoherence
Cooling the qubit into a pure initial state is crucial for realizing fault-tolerant quantum information processing. Here we envisage a star-topology arrangement of reset and computation qubits for this purpose. The reset qubits cool or purify the com
We give a review on entanglement purification for bipartite and multipartite quantum states, with the main focus on theoretical work carried out by our group in the last couple of years. We discuss entanglement purification in the context of quantum
We provide a systematic way of constructing entanglement-assisted quantum error-correcting codes via graph states in the scenario of preexisting perfectly protected qubits. It turns out that the preexisting entanglement can help beat the quantum Hamm