ترغب بنشر مسار تعليمي؟ اضغط هنا

A nonparametric approach to assess undergraduate performance

310   0   0.0 ( 0 )
 نشر من قبل Hildete Pinheiro
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Nonparametric methodologies are proposed to assess college students performance. Emphasis is given to gender and sector of High School. The application concerns the University of Campinas, a research university in Southeast Brazil. In Brazil college is based on a somewhat rigid set of subjects for each major. Thence a students relative performance can not be accurately measured by the Grade Point Average or by any other single measure. We then define individual vectors of course grades. These vectors are used in pairwise comparisons of common subject grades for individuals that entered college in the same year. The relative college performances of any two students is compared to their relative performances on the Entrance Exam Score. A test based on generalized U-statistics is developed for homogeneity of some predefined groups. Asymptotic normality of the test statistic is true for both null and alternative hypotheses. Maximum power is attained by employing the union intersection principle.



قيم البحث

اقرأ أيضاً

93 - Yifan Cui , Jan Hannig 2020
Fiducial inference, as generalized by Hannig et al. (2016), is applied to nonparametric g-modeling (Efron, 2016) in the discrete case. We propose a computationally efficient algorithm to sample from the fiducial distribution, and use generated sample s to construct point estimates and confidence intervals. We study the theoretical properties of the fiducial distribution and perform extensive simulations in various scenarios. The proposed approach gives rise to surprisingly good statistical performance in terms of the mean squared error of point estimators and coverage of confidence intervals. Furthermore, we apply the proposed fiducial method to estimate the probability of each satellite site being malignant using gastric adenocarcinoma data with 844 patients (Efron, 2016).
In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application--inferrin g time-resolved aerosol concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed-formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time-resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package bnmr is made available to implement the method.
In this paper, a Bayesian semiparametric copula approach is used to model the underlying multivariate distribution $F_{true}$. First, the Dirichlet process is constructed on the unknown marginal distributions of $F_{true}$. Then a Gaussian copula mod el is utilized to capture the dependence structure of $F_{true}$. As a result, a Bayesian multivariate normality test is developed by combining the relative belief ratio and the Energy distance. Several interesting theoretical results of the approach are derived. Finally, through several simulated examples and a real data set, the proposed approach reveals excellent performance.
A raga is a melodic structure with fixed notes and a set of rules characterizing a certain mood endorsed through performance. By a vadi swar is meant that note which plays the most significant role in expressing the raga. A samvadi swar similarly is the second most significant note. However, the determination of their significance has an element of subjectivity and hence we are motivated to find some truths through an objective analysis. The paper proposes a probabilistic method of note detection and demonstrates how the relative frequency (relative number of occurrences of the pitch) of the more important notes stabilize far more quickly than that of others. In addition, a count for distinct transitory and similar looking non-transitory (fundamental) frequency movements (but possibly embedding distinct emotions!) between the notes is also taken depicting the varnalankars or musical ornaments decorating the notes and note sequences as rendered by the artist. They reflect certain structural properties of the ragas. Several case studies are presented.
This paper develops a frequentist solution to the functional calibration problem, where the value of a calibration parameter in a computer model is allowed to vary with the value of control variables in the physical system. The need of functional cal ibration is motivated by engineering applications where using a constant calibration parameter results in a significant mismatch between outputs from the computer model and the physical experiment. Reproducing kernel Hilbert spaces (RKHS) are used to model the optimal calibration function, defined as the functional relationship between the calibration parameter and control variables that gives the best prediction. This optimal calibration function is estimated through penalized least squares with an RKHS-norm penalty and using physical data. An uncertainty quantification procedure is also developed for such estimates. Theoretical guarantees of the proposed method are provided in terms of prediction consistency and consistency of estimating the optimal calibration function. The proposed method is tested using both real and synthetic data and exhibits more robust performance in prediction and uncertainty quantification than the existing parametric functional calibration method and a state-of-art Bayesian method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا