ﻻ يوجد ملخص باللغة العربية
Even if Dark Matter (DM) is neutral under electromagnetism, it can still interact with the Standard Model (SM) via photon exchange from higher-dimensional operators. Here we classify the general effective operators coupling DM to photons, distinguishing between Dirac/Majorana fermion and complex/real scalar DM. We provide model-independent constraints on these operators from direct and indirect detection. We also constrain various DM-lepton operators, which induce DM-photon interactions via RG running or which typically arise in sensible UV-completions. This provides a simple way to quickly assess constraints on any DM model that interacts mainly via photon exchange or couples to SM leptons.
We discuss the possibility of producing a light dark photon dark matter through a coupling between the dark photon field and the inflaton. The dark photon with a large wavelength is efficiently produced due to the inflaton motion during inflation and
Many extensions of Standard Model (SM) include a dark sector which can interact with the SM sector via a light mediator. We explore the possibilities to probe such a dark sector by studying the distortion of the CMB spectrum from the blackbody shape
We present a scenario of vector dark matter production during inflation containing a complex inflaton field which is charged under a dark gauge field and which has a symmetry breaking potential. As the inflaton field rolls towards the global minimum
Very light dark matter is usually taken to consist of uncharged bosons such as axion-like particles or dark photons. Here, we consider the prospect of very light, possibly even sub-eV dark matter carrying a net charge that is (approximately) conserve
A new cosmological scenario is proposed in which a light scalaron of $f (R)$ gravity plays the role of dark matter. In this scenario, the scalaron initially resides at the minimum of its effective potential while the electroweak symmetry is unbroken.