ﻻ يوجد ملخص باللغة العربية
Much of the information we hope to extract from the gravitational-waves signatures of compact binaries is only obtainable when we can accurately constrain the inclination of the source. In this paper, we discuss in detail a degeneracy between the measurement of the binary distance and inclination which limits our ability to accurately measure the inclination using gravitational waves alone. This degeneracy is exacerbated by the expected distribution of events in the universe, which leads us to prefer face-on systems at a greater distance. We use a simplified model that only considers the binary distance and orientation, and show that this gives comparable results to the full parameter estimates obtained from the binary neutron star merger GW170817. For the advanced LIGO-Virgo network, it is only signals which are close to edge-on, with an inclination greater than $sim 75^{circ}$ that will be distinguishable from face-on systems. For extended networks which have good sensitivity to both gravitational wave polarizations, for face-on systems we will only be able to constrain the inclination of a signal with SNR 20 to be $45^{circ}$ or less, and even for loud signals, with SNR of 100, the inclination of a face-on signal will only be constrained to $30^{circ}$. For black hole mergers observed at cosmological distances, in the absence of higher modes or orbital precession, the strong degeneracy between inclination and distance dominates the uncertainty in measurement of redshift and hence the masses of the black holes.
Inspiralling compact binaries as standard sirens will soon become an invaluable tool for cosmology when advanced interferometric gravitational-wave detectors begin their observations in the coming years. However, a degeneracy in the information carri
We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the bin
Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve t
We present a systematic comparison of the binary black hole (BBH) signal waveform reconstructed by two independent and complementary approaches used in LIGO and Virgo source inference: a template-based analysis, and a morphology-independent analysis.
LIGO and Virgo have recently observed a number of gravitational wave (GW) signals that are fully consistent with being emitted by binary black holes described by general relativity. However, there are theoretical proposals of exotic objects that can