ﻻ يوجد ملخص باللغة العربية
The controlled generation and the protection of entanglement is key to quantum simulation and quantum computation. At the single-mode level, protocols based on photonic cat states hold strong promise as they present unprecedentedly long-lived coherence and may be combined with powerful error correction schemes. Here, we demonstrate that robust ensembles of many-body photonic cat states can be generated in a Bose-Hubbard model with pair hopping via a spontaneous U(1) symmetry breaking mechanism. We identify a parameter region where the ground state is a massively degenerate manifold consisting of local cat states which are factorized throughout the lattice and whose conserved individual parities can be used to make a register of qubits. This phenomenology occurs for arbitrary system sizes or geometries, as soon as long-range order is established, and it extends to driven-dissipative conditions. In the thermodynamic limit, it is related to a Mott insulator to pair-superfluid phase transition.
Quantum adiabatic evolution, an important fundamental concept inphysics, describes the dynamical evolution arbitrarily close to the instantaneous eigenstate of a slowly driven Hamiltonian. In most systems undergoing spontaneous symmetry-breaking tran
Quantum entanglement involving coherent superpositions of macroscopically distinct states is among the most striking features of quantum theory, but its realization is challenging, since such states are extremely fragile. Using a programmable quantum
We report results of the analysis of the spontaneous symmetry breaking (SSB) in the basic (actually, simplest) model which is capable to produce the SSB phenomenology in the one-dimensional setting. It is based on the Gross-Pitaevskii - nonlinear Sch
Spontaneous symmetry breaking (SSB) is a key concept in physics that for decades has played a crucial role in the description of many physical phenomena in a large number of different areas, like particle physics, cosmology, and condensed-matter phys
We study baryogenesis in effective field theories where a $mathrm{U}(1)_{ B-L}$-charged scalar couples to gravity via curvature invariants. We analyze the general possibilities in such models, noting the relationships between some of them and existin