ﻻ يوجد ملخص باللغة العربية
We consider a version of Left-Right Symmetric Model in which the scalar sector consists of a Higgs bidoublet ($Phi$) with $B-L=0$, Higgs doublets ($H_{L,R}$) with $B-L=1$ and a charged scalar ($delta^+$) with $B-L=2$ leading to radiatively generated Majorana masses for neutrinos and thereby, leads to new physics contributions to neutrinoless double beta decay ($0 u beta beta$). We show that such a novel framework can be embedded in a non-SUSY $SO(10)$ GUT leading to successful gauge coupling unification at around $10^{16}$ GeV with the scale of left-right symmetry breaking around $10^{10}$ GeV. The model can also be extended to have left-right symmetry breaking at TeV scale, enabling detection of $W_R, Z_R$ bosons in LHC and future collider searches. In the context of neutrinoless double beta decay, this model can saturate the present bound from GERDA and KamLAND-Zen experiments. Also, we briefly explain how keV-MeV range RH neutrino arising from our model can saturate various astrophysical and cosmological constraints and can be considered as warm Dark Matter (DM) candidate to address various cosmological issues. We also discuss on left-right theories with Higgs doublets without having scalar bidoublet leading to fermion masses and mixings by inclusion of vector like fermions.
We investigate the possibility of neutrinoless double beta decay ($0 ubetabeta$) and leptogenesis within the Alternative Left-Right Model (ALRM). Unlike the usual left-right symmetric model, ALRM features a Majorana right-handed neutrino which does n
We consider the triple coupling of the Higgs boson in the context of the gauge-Higgs unification scenario. We show that the triple coupling of the Higgs boson in this scenario generically deviates from SM prediction since the Higgs potential in this
The electroweak phase transition in GUT inspired $SO(5) times U(1) times SU(3)$ gauge-Higgs unification is shown to be of weakly first-order and occurs at $T = T_c^{ rm EW} sim 163 ,$GeV, which is very similar to the behavior in the standard model in
The recent diphoton excess signal at an invariant mass of 750 GeV can be interpreted in the framework of left-right symmetric models with additional scalar singlets and vector-like fermions. We propose a minimal scenario for such a purpose. Extending
Given the tremendous phenomenological success of the Standard Model (SM) framework, it becomes increasingly important to understand to what extent its specific structure dynamically emerges from unification principles. In this study, we present a nov