ﻻ يوجد ملخص باللغة العربية
Luminous red galaxies (LRGs) are the most massive galaxies at $zsim 0.5$ and, by selection, have negligible star formation. These objects have halo masses between those of $L_{*}$ galaxies, whose circumgalactic media (CGM) are observed to have large masses of cold gas, and clusters of galaxies, which primarily contain hot gas. Here we report detections of strong and extended metal (CIII 977) and HI lines in the CGM of two LRGs. The CIII lines have equivalent widths of $sim 1.8$ r{A} and $sim 1.2$ r{A} , and velocity spreads of $sim 796$ km s$^{-1}$ and $sim 1245$ km s$^{-1}$, exceeding all such measurements from local $sim L_{*}$ galaxies (maximal CIII equivalent widths $sim 1$ r{A}). The data demonstrate that a subset of halos hosting very massive, quenched galaxies contain significant complexes of cold gas. Possible scenarios to explain our observations include that the LRGs CGM originate from past activity (e.g., star formation or active galactic nuclei driven outflows) or from the CGM of galaxies in overlapping subhalos. We favor the latter scenario, in which the properties of the CGM are more tightly linked to the underlying dark matter halo than properties of the targeted galaxies (e.g., star formation).
We present the results of the HIGHz Arecibo survey, which measured the HI content of 39 galaxies at redshift $z>0.16$ selected from the Sloan Digital Sky Survey. These are all actively star-forming, disk-dominated systems in relatively isolated envir
We present a study, done with the Australian LBA, of HI absorption for two compact radio galaxies (PKS 1549-79 and PKS 1814-63). In both the radio galaxies, the HI appears to give us information about the environment in which the radio sources are em
Quenched massive spiral galaxies have attracted great attention recently, as more data is available to constrain their environment and cold gas content. However, the quenching mechanism is still uncertain, as it depends on the mass range and baryon b
By analysing a sample of galaxies selected from the HI Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected HI content based on their optical properties, we investigate what drives these HI eXtreme (HIX) galaxies to be so HI-r
We use the EAGLE (Evolution and Assembly of GaLaxies and their Environments) cosmological simulation to study the distribution of baryons, and far-ultraviolet (O VI), extreme-ultraviolet (Ne VIII) and X-ray (O VII, O VIII, Ne IX, and Fe XVII) line ab