ترغب بنشر مسار تعليمي؟ اضغط هنا

No evidence for modifications of gravity from galaxy motions on cosmological scales

86   0   0.0 ( 0 )
 نشر من قبل Jian-Hua He
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jian-hua He




اسأل ChatGPT حول البحث

The recent discovery of gravitational waves marks the culmination of a sequence of successful tests of the general theory of relativity (GR) since its formulation in 1915. Yet these tests remain confined to the scale of stellar systems or the strong gravity regime. A departure from GR on larger, cosmological scales has been advocated by the proponents of modified gravity theories as an alternative to the Cosmological Constant to account for the observed cosmic expansion history. While indistinguishable in these terms by construction, such models on the other hand yield distinct values for the linear growth rate of density perturbations and, as a consequence, for the associated galaxy peculiar velocity field. Measurements of the resulting anisotropy of galaxy clustering, when spectroscopic redshifts are used to derive distances, have thus been proposed as a powerful probe of the validity of GR on cosmological scales. However, despite significant effort in modelling such redshift space distortions, systematic errors remain comparable to current statistical uncertainties. Here, we present the results of a different forward-modelling approach, which fully exploits the sensitivity of the galaxy velocity field to modifications of GR. We use state-of-the-art, high-resolution N-body simulations of a standard GR and a compelling f(R) model, one of GRs simplest variants, to build simulated catalogues of stellar-mass-selected galaxies through a robust match to the Sloan Digital Sky Survey observations. We find that, well within the uncertainty of this technique, f(R) fails to reproduce the observed redshift-space clustering on scales 1-10 Mpc/h. Instead, the standard LCDM GR model agrees impressively well with the data. This result provides a strong confirmation, on cosmological scales, of the robustness of Einsteins general theory of relativity.



قيم البحث

اقرأ أيضاً

Model-independent constraints on modified gravity models hitherto exist mainly on linear scales. A recently developed formalism presented a consistent parameterisation that is valid on all scales. Using this approach, we perform model-independent mod ified gravity $N$-body simulations on all cosmological scales with a time-dependent $mu$. We present convergence tests of our simulations, and we examine how well existing fitting functions reproduce the non-linear matter power spectrum of the simulations. We find that although there is a significant variation in the accuracy of all of the fitting functions over the parameter space of our simulations, the ReACT framework delivers the most consistent performance for the matter power spectrum. We comment on how this might be improved to the level required for future surveys such as Euclid and the Vera Rubin Telescope (LSST). We also show how to compute weak-lensing observables consistently from the simulated matter power spectra in our approach, and show that ReACT also performs best when fitting the weak-lensing observables. This paves the way for a full model-independent test of modified gravity using all of the data from such upcoming surveys.
This is the third of a series of papers in which we derive simultaneous constraints on cosmological parameters and X-ray scaling relations using observations of the growth of massive, X-ray flux-selected galaxy clusters. Our data set consists of 238 clusters drawn from the ROSAT All-Sky Survey, and incorporates extensive follow-up observations using the Chandra X-ray Observatory. Here we present improved constraints on departures from General Relativity (GR) on cosmological scales, using the growth index, gamma, to parameterize the linear growth rate of cosmic structure. Using the method of Mantz et al. (2009a), we simultaneously and self-consistently model the growth of X-ray luminous clusters and their observable-mass scaling relations, accounting for survey biases, parameter degeneracies and systematic uncertainties. We combine the cluster growth data with gas mass fraction, SNIa, BAO and CMB data. This combination leads to a tight correlation between gamma and sigma_8. Consistency with GR requires gamma~0.55. Under the assumption of self-similar evolution and constant scatter in the scaling relations, and for a flat LCDM model, we measure gamma(sigma_8/0.8)^6.8=0.55+0.13-0.10, with 0.79<sigma_8<0.89. Relaxing the assumptions on the scaling relations by introducing two additional parameters to model possible evolution in the normalization and scatter of the luminosity-mass relation, we obtain consistent constraints on gamma that are only ~20% weaker than those above. Allowing the dark energy equation of state, w, to take any constant value, we simultaneously constrain the growth and expansion histories, and find no evidence for departures from either GR or LCDM. Our results represent the most robust consistency test of GR on cosmological scales to date. (Abridged)
Most of the information on our cosmos stems from either late-time observations or the imprint of early-time inhomogeneities on the cosmic microwave background. We explore to what extent early modifications of gravity, which become significant after r ecombination but then decay towards the present, can be constrained by current cosmological observations. For the evolution of the gravitational modification, we adopt the decaying mode of a hybrid-metric Palatini $f(mathcal{R})$ gravity model which is designed to reproduce the standard cosmological background expansion history and due to the decay of the modification is naturally compatible with Solar-System tests. We embed the model in the effective field theory description of Horndeski scalar-tensor gravity with an early-time decoupling of the gravitational modification. Since the quasistatic approximation for the perturbations in the model breaks down at high redshifts, where modifications remain relevant, we introduce a computationally efficient correction to describe the evolution of the scalar field fluctuation in this regime. We compare the decaying early-time modification against geometric probes and recent Planck measurements and find no evidence for such effects in the observations. Current data constrains the scalar field value at $|f_{mathcal{R}}(z=z_{rm on})| lesssim 10^{-2}$ for modifications introduced at redshifts $z_{rm on}sim(500-1000)$ with present-day value $|f_{mathcal{R}0}|lesssim10^{-8}$. Finally, we comment on constraints that will be achievable with future 21~cm surveys and gravitational wave experiments.
We present an upgraded version of textsc{MG-MAMPOSSt}, an extension of the textsc{MAMPOSSt} algorithm that performs Bayesian fits of models of mass and velocity anisotropy profiles to the distribution of tracers in projected phase space, to handle mo dified gravity models and constrain their parameters. The new version implements two distinct types of gravity modifications, namely general chameleon and Vainshtein screening, and is further equipped with a Monte-Carlo-Markov-Chain module for an efficient parameter space exploration. The program is complemented by the textsc{ClusterGEN} code, capable of producing mock galaxy clusters under the assumption of spherical symmetry, dynamical equilibrium, and Gaussian local velocity distribution functions as in textsc{MAMPOSSt}. We demonstrate the potential of the method by analysing a set of synthetic, isolated spherically-symmetric dark matter haloes, focusing on the statistical degeneracies between model parameters. Assuming the availability of additional lensing-like information, we forecast the constraints on the modified gravity parameters for the two models presented, as expected from joint lensing+internal kinematics analyses, in view of upcoming galaxy cluster surveys. In Vainshtein screening, we forecast the weak lensing effect through the estimation of the full convergence-shear profile. For chameleon screening, we constrain the allowed region in the space of the two free parameters of the model, further focusing on the $f(mathcal{R})$ subclass to obtain realistic bounds on the background field $|f_{mathcal{R}0}|$. Our analysis demonstrates the complementarity of internal kinematics and lensing probes for constraining modified gravity theories, and how the bounds on Vainshtein-screened theories improve through the combination of the two probes.
It is shown that extensions to General Relativity, which introduce a strongly coupled scalar field, can be viable if the interaction has a non-conformal form. Such disformal coupling depends upon the gradients of the scalar field. Thus, if the field is locally static and smooth, the coupling becomes invisible in the solar system: this is the disformal screening mechanism. A cosmological model is considered where the disformal coupling triggers the onset of accelerated expansion after a scaling matter era, giving a good fit to a wide range of observational data. Moreover, the interaction leaves signatures in the formation of large-scale structure that can be used to probe such couplings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا