ﻻ يوجد ملخص باللغة العربية
The recent discovery of gravitational waves marks the culmination of a sequence of successful tests of the general theory of relativity (GR) since its formulation in 1915. Yet these tests remain confined to the scale of stellar systems or the strong gravity regime. A departure from GR on larger, cosmological scales has been advocated by the proponents of modified gravity theories as an alternative to the Cosmological Constant to account for the observed cosmic expansion history. While indistinguishable in these terms by construction, such models on the other hand yield distinct values for the linear growth rate of density perturbations and, as a consequence, for the associated galaxy peculiar velocity field. Measurements of the resulting anisotropy of galaxy clustering, when spectroscopic redshifts are used to derive distances, have thus been proposed as a powerful probe of the validity of GR on cosmological scales. However, despite significant effort in modelling such redshift space distortions, systematic errors remain comparable to current statistical uncertainties. Here, we present the results of a different forward-modelling approach, which fully exploits the sensitivity of the galaxy velocity field to modifications of GR. We use state-of-the-art, high-resolution N-body simulations of a standard GR and a compelling f(R) model, one of GRs simplest variants, to build simulated catalogues of stellar-mass-selected galaxies through a robust match to the Sloan Digital Sky Survey observations. We find that, well within the uncertainty of this technique, f(R) fails to reproduce the observed redshift-space clustering on scales 1-10 Mpc/h. Instead, the standard LCDM GR model agrees impressively well with the data. This result provides a strong confirmation, on cosmological scales, of the robustness of Einsteins general theory of relativity.
Model-independent constraints on modified gravity models hitherto exist mainly on linear scales. A recently developed formalism presented a consistent parameterisation that is valid on all scales. Using this approach, we perform model-independent mod
This is the third of a series of papers in which we derive simultaneous constraints on cosmological parameters and X-ray scaling relations using observations of the growth of massive, X-ray flux-selected galaxy clusters. Our data set consists of 238
Most of the information on our cosmos stems from either late-time observations or the imprint of early-time inhomogeneities on the cosmic microwave background. We explore to what extent early modifications of gravity, which become significant after r
We present an upgraded version of textsc{MG-MAMPOSSt}, an extension of the textsc{MAMPOSSt} algorithm that performs Bayesian fits of models of mass and velocity anisotropy profiles to the distribution of tracers in projected phase space, to handle mo
It is shown that extensions to General Relativity, which introduce a strongly coupled scalar field, can be viable if the interaction has a non-conformal form. Such disformal coupling depends upon the gradients of the scalar field. Thus, if the field