ترغب بنشر مسار تعليمي؟ اضغط هنا

Resistive cooling of highly charged ions in a Penning trap to a fluid-like state

75   0   0.0 ( 0 )
 نشر من قبل Zhexi Guo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed a detailed experimental study of resistive cooling of large ensembles of highly charged ions such as Ar$^{13+}$ in a cryogenic Penning trap. Different from the measurements reported in [M. Vogel et al., Phys. Rev. A, 043412 (2014)], we observe purely exponential cooling behavior when conditions are chosen to allow collisional thermalization of the ions. We provide evidence that in this situation, resistive cooling time constants and final temperatures are independent of the initial ion energy, and that the cooling time constant of a thermalized ion ensemble is identical to the single-ion cooling time constant. For sufficiently high ion number densities, our measurements show discontinuities in the spectra of motional resonances which indicate a transition of the ion ensemble to a fluid-like state when cooled to temperatures below approximately 14 K. With the final ion temperature presently being 7.5 K, ions of the highest charge states are expected to form ion crystals by mere resistive cooling, in particular not requiring the use of laser cooling.



قيم البحث

اقرأ أيضاً

A low-energy, compact and superconducting electron beam ion trap (the Shanghai-Wuhan EBIT or SW-EBIT) for extraction of highly charged ions is presented. The magnetic field in the central drift tube of the SW-EBIT is approximately 0.21 T produced by a pair of high-temperature superconducting coils. The electron-beam energy of the SW-EBIT is in the range of 30-4000 eV, and the maximum electron-beam current is up to 9 mA. Acting as a source of highly charged ions, the ion-beam optics for extraction is integrated, including an ion extractor and an einzel lens. A Wien filter is then used to measure the charge-state distribution of the extracted ions. In this work, the tungsten ions below the charge state of 15 have been produced, extracted, and analyzed. The charge-state distributions and spectra in the range of 530-580 nm of tungsten ions have been measured simultaneously with the electron-beam energy of 279 eV and 300 eV, which preliminarily indicates that the 549.9 nm line comes from $W^{14+}$.
Relativistic calculations of the isotope shifts of energy levels in highly charged Li-like ions are performed. The nuclear recoil (mass shift) contributions are calculated by merging the perturbative and large-scale configuration-interaction Dirac-Fo ck-Sturm (CI-DFS) methods. The nuclear size (field shift) contributions are evaluated by the CI-DFS method including the electron-correlation, Breit, and QED corrections. The nuclear deformation and nuclear polarization corrections to the isotope shifts in Li-like neodymium, thorium, and uranium are also considered. The results of the calculations are compared with the theoretical values obtained with other methods.
147 - H.-J. Kluge , T. Beier , K. Blaum 2007
An overview and status report of the new trapping facility for highly charged ions at the Gesellschaft fuer Schwerionenforschung is presented. The construction of this facility started in 2005 and is expected to be completed in 2008. Once operational , highly charged ions will be loaded from the experimental storage ring ESR into the HITRAP facility, where they are decelerated and cooled. The kinetic energy of the initially fast ions is reduced by more than fourteen orders of magnitude and their thermal energy is cooled to cryogenic temperatures. The cold ions are then delivered to a broad range of atomic physics experiments.
The most precise to-date evaluation of the nuclear recoil effect on the $n=1$ and $n=2$ energy levels of He-like ions is presented in the range $Z=12-100$. The one-electron recoil contribution is calculated within the framework of the rigorous QED ap proach to first order in the electron-to-nucleus mass ratio $m/M$ and to all orders in the parameter $alpha Z$. The two-electron $m/M$ recoil term is calculated employing the $1/Z$ perturbation theory. The recoil contribution of the zeroth order in $1/Z$ is evaluated to all orders in $alpha Z$, while the $1/Z$ term is calculated using the Breit approximation. The recoil corrections of the second and higher orders in $1/Z$ are taken into account within the nonrelativistic approach. The obtained results are compared with the previous evaluation of this effect [A. N. Artemyev et al., Phys. Rev. A 71, 062104 (2005)].
82 - Paul Indelicato 2019
The current status of bound state quantum electrodynamics calculations of transition energies for few-electron ions is reviewed. Evaluation of one and two body QED correction is presented, as well as methods to evaluate many-body effects that cannot beevaluated with present-day QED calculations. Experimental methods, their evolution over time, as well as progress in accuracy are presented. A detailed, quantitative, comparison between theory and experiment is presented for transition energies in few-electron ions. In particular the impact of the nuclear size correction on the quality of QED tests as a function of the atomic number is discussed.The cases of hyperfine transition energies and of bound-electron Land{e} $g$-factor are also considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا