ﻻ يوجد ملخص باللغة العربية
Introducing correlations between the spatial and temporal degrees of freedom of a pulsed optical beam (or wave packet) can profoundly alter its propagation in free space. Indeed, appropriate spatio-temporal spectral correlations can render the wave packet propagation-invariant: the spatial and temporal profiles remain unchanged along the propagation axis. The spatio-temporal spectral locus of any such wave packet lies at the intersection of the light-cone with tilted spectral hyperplanes. We investigate (2+1)D space-time propagation-invariant light sheets, and identify 10 classes categorized according to the magnitude and sign of their group velocity and the nature of their spatial spectrum - whether the low spatial frequencies are physically allowed or forbidden according to their compatibility with causal excitation and propagation. We experimentally synthesize and characterize all 10 classes using an experimental strategy capable of synthesizing space-time wave packets that incorporate arbitrary spatio-temporal spectral correlations.
An optical buffer having a large delay-bandwidth-product -- a critical component for future all-optical communications networks -- remains elusive. Central to its realization is a controllable inline optical delay line, previously accomplished via en
Controlling the group velocity of an optical pulse typically requires traversing a material or structure whose dispersion is judiciously crafted. Alternatively, the group velocity can be modified in free space by spatially structuring the beam profil
Space-time wave packets are propagation-invariant pulsed beams that travel in free space without diffraction or dispersion by virtue of tight correlations introduced into their spatio-temporal spectrum. Such correlations constitute an embodiment of c
The refraction of space-time (ST) wave packets at planar interfaces between non-dispersive, homogeneous, isotropic dielectrics exhibit fascinating phenomena, even at normal incidence. Examples of such refractive phenomena include group-velocity invar
The refraction of space-time (ST) wave packets offers many fascinating surprises with respect to conventional pulsed beams. In paper (I) of this sequence, we described theoretically the refraction of all families of ST wave packets at normal and obli