ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing Vibrations at the Subaru Telescope for the Subaru Coronagraphic Extreme Adaptive Optics instrument

161   0   0.0 ( 0 )
 نشر من قبل Julien Lozi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Vibrations are a key source of image degradation in ground-based instrumentation, especially for high-contrast imaging instruments. Vibrations reduce the quality of the correction provided by the adaptive optics system, blurring the science image and reducing the sensitivity of most science modules. We studied vibrations using the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument at the Subaru Telescope as it is the most vibration sensitive system installed on the telescope. We observed vibrations for all targets, usually at low frequency, below 10 Hz. Using accelerometers on the telescope, we confirmed that these vibrations were introduced by the telescope itself, and not the instrument. It was determined that they were related to the pitch of the encoders of the telescope drive system, both in altitude and azimuth, with frequencies evolving proportionally to the rotational speed of the telescope. Another strong vibration was found in the altitude axis of the telescope, around the time of transit of the target, when the altitude rotation speed is below 0.12 arcsec/s. These vibrations are amplified by the 10-Hz control loop of the telescope, especially in a region between 4 and 6 Hz. In this work, we demonstrate an accurate characterization of the frequencies of the telescope vibrations using only the coordinates -right ascension and declination- of the target, and provide a means by which we can predict them for any telescope pointing. This will be a powerful tool that can be used by more advanced wavefront control algorithms, especially predictive control, that uses informations about the disturbance to calculate the best correction.



قيم البحث

اقرأ أيضاً

We describe the current performance of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument on the Subaru telescope on Maunakea, Hawaii and present early science results for SCExAO coupled with the CHARIS integral field spectrograph. SCExAO now delivers H band Strehl ratios up to $sim$ 0.9 or better, extreme AO corrections for optically faint stars, and planet-to-star contrasts rivaling that of GPI and SPHERE. CHARIS yield high signal-to-noise detections and 1.1--2.4 $mu m$ spectra of benchmark directly-imaged companions like HR 8799 cde and kappa And b that clarify their atmospheric properties. We also show how recently published as well as unpublished observations of LkCa 15 lead to a re-evaluation of its claimed protoplanets. Finally, we briefly describe plans for a SCExAO-focused direct imaging campaign to directly image and characterize young exoplanets, planet-forming disks, and (later) mature planets in reflected light.
We present new on-sky results for the Subaru Coronagraphic Extreme Adaptive Optics imager (SCExAO) verifying and quantifying the contrast gain enabled by key components: the closed-loop coronagraphic low-order wavefront sensor (CLOWFS) and focal plan e wavefront control (speckle nulling). SCExAO will soon be coupled with a high-order, Pyramid wavefront sensor which will yield > 90% Strehl ratio and enable 10^6--10^7 contrast at small angular separations allowing us to image gas giant planets at solar system scales. Upcoming instruments like VAMPIRES, FIRST, and CHARIS will expand SCExAOs science capabilities.
We describe the current on-sky performance of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument on the Subaru telescope on Maunakea, Hawaii. SCExAO is continuing to advance its AO performance, delivering H band Strehl ratios in exc ess of 0.9 for bright stars. We describe new advances with SCExAOs wavefront control that lead to a more stable corrected wavefront and diffraction-limited imaging in the optical, modifications to code that better handle read noise suppression within CHARIS, and tests of the spectrophotometric precision and accuracy within CHARIS. We outline steps in the CHARIS Data Processing Pipeline that output publication-grade data products. Finally, we note recent and upcoming science results, including the discovery of new directly-imaged systems and multiwavelength, deeper characterization of planet-forming disks, and upcoming technical advances that will improve SCExAOs sciencec capabilities.
High contrast coronagraphic imaging is a challenging task for telescopes with central obscurations and thick spider vanes, such as the Subaru Telescope. Our group is currently assembling an extreme AO bench designed as an upgrade for the newly commis sionned coronagraphic imager instrument HiCIAO, that addresses these difficulties. The so-called SCExAO system combines a high performance PIAA coronagraph to a MEMS-based wavefront control system that will be used in complement of the Subaru AO188 system. We present and demonstrate good performance of two key optical components that suppress the spider vanes, the central obscuration and apodize the beam for high contrast coronagraphy, while preserving the throughput and the angular resolution.
The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose high-contrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging t echnologies for ELTs. It is a multi-band instrument which makes use of light from 600 to 2500nm allowing for coronagraphic direct exoplanet imaging of the inner 3 lambda/D from the stellar host. Wavefront sensing and control are key to the operation of SCExAO. A partial correction of low-order modes is provided by Subarus facility adaptive optics system with the final correction, including high-order modes, implemented downstream by a combination of a visible pyramid wavefront sensor and a 2000-element deformable mirror. The well corrected NIR (y-K bands) wavefronts can then be injected into any of the available coronagraphs, including but not limited to the phase induced amplitude apodization and the vector vortex coronagraphs, both of which offer an inner working angle as low as 1 lambda/D. Non-common path, low-order aberrations are sensed with a coronagraphic low-order wavefront sensor in the infrared (IR). Low noise, high frame rate, NIR detectors allow for active speckle nulling and coherent differential imaging, while the HAWAII 2RG detector in the HiCIAO imager and/or the CHARIS integral field spectrograph (from mid 2016) can take deeper exposures and/or perform angular, spectral and polarimetric differential imaging. Science in the visible is provided by two interferometric modules: VAMPIRES and FIRST, which enable sub-diffraction limited imaging in the visible region with polarimetric and spectroscopic capabilities respectively. We describe the instrument in detail and present preliminary results both on-sky and in the laboratory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا