ﻻ يوجد ملخص باللغة العربية
We consider the task of designing Local Computation Algorithms (LCA) for applications of the Lov{a}sz Local Lemma (LLL). LCA is a class of sublinear algorithms proposed by Rubinfeld et al.~cite{Ronitt} that have received a lot of attention in recent years. The LLL is an existential, sufficient condition for a collection of sets to have non-empty intersection (in applications, often, each set comprises all objects having a certain property). The ground-breaking algorithm of Moser and Tardos~cite{MT} made the LLL fully constructive, following earlier results by Beck~cite{beck_lll} and Alon~cite{alon_lll} giving algorithms under significantly stronger LLL-like conditions. LCAs under those stronger conditions were given in~cite{Ronitt}, where it was asked if the Moser-Tardos algorithm can be used to design LCAs under the standard LLL condition. The main contribution of this paper is to answer this question affirmatively. In fact, our techniques yield LCAs for settings beyond the standard LLL condition.
Let $Phi = (V, mathcal{C})$ be a constraint satisfaction problem on variables $v_1,dots, v_n$ such that each constraint depends on at most $k$ variables and such that each variable assumes values in an alphabet of size at most $[q]$. Suppose that eac
We present a poly $log log n$ time randomized CONGEST algorithm for a natural class of Lovasz Local Lemma (LLL) instances on constant degree graphs. This implies, among other things, that there are no LCL problems with randomized complexity between $
We study the problem of sampling an approximately uniformly random satisfying assignment for atomic constraint satisfaction problems i.e. where each constraint is violated by only one assignment to its variables. Let $p$ denote the maximum probabilit
We develop tools for analyzing focused stochastic local search algorithms. These are algorithms which search a state space probabilistically by repeatedly selecting a constraint that is violated in the current state and moving to a random nearby stat
We show that any randomised Monte Carlo distributed algorithm for the Lovasz local lemma requires $Omega(log log n)$ communication rounds, assuming that it finds a correct assignment with high probability. Our result holds even in the special case of