ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of FIR Systems with Binary Input and Output Observations

90   0   0.0 ( 0 )
 نشر من قبل Alex Leong
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers the identification of FIR systems, where information about the inputs and outputs of the system undergoes quantization into binary values before transmission to the estimator. In the case where the thresholds of the input and output quantizers can be adapted, but the quantizers have no computation and storage capabilities, we propose identification schemes which are strongly consistent for Gaussian distributed inputs and noises. This is based on exploiting the correlations between the quantized input and output observations to derive nonlinear equations that the true system parameters must satisfy, and then estimating the parameters by solving these equations using stochastic approximation techniques. If, in addition, the input and output quantizers have computational and storage capabilities, strongly consistent identification schemes are proposed which can handle arbitrary input and noise distributions. In this case, some conditional expectation terms are computed at the quantizers, which can then be estimated based on binary data transmitted by the quantizers, subsequently allowing the parameters to be identified by solving a set of linear equations. The algorithms and their properties are illustrated in simulation examples.



قيم البحث

اقرأ أيضاً

108 - Biqiang Mu , Tianshi Chen 2017
Input design is an important issue for classical system identification methods but has not been investigated for the kernel-based regularization method (KRM) until very recently. In this paper, we consider in the time domain the input design problem of KRMs for LTI system identification. Different from the recent result, we adopt a Bayesian perspective and in particular make use of scalar measures (e.g., the $A$-optimality, $D$-optimality, and $E$-optimality) of the Bayesian mean square error matrix as the design criteria subject to power-constraint on the input. Instead to solve the optimization problem directly, we propose a two-step procedure. In the first step, by making suitable assumptions on the unknown input, we construct a quadratic map (transformation) of the input such that the transformed input design problems are convex, the number of optimization variables is independent of the number of input data, and their global minima can be found efficiently by applying well-developed convex optimization software packages. In the second step, we derive the expression of the optimal input based on the global minima found in the first step by solving the inverse image of the quadratic map. In addition, we derive analytic results for some special types of fixed kernels, which provide insights on the input design and also its dependence on the kernel structure.
In this paper, we develop a theory of learning nonlinear input-output maps with fading memory by dissipative quantum systems, as a quantum counterpart of the theory of approximating such maps using classical dynamical systems. The theory identifies t he properties required for a class of dissipative quantum systems to be {em universal}, in that any input-output map with fading memory can be approximated arbitrarily closely by an element of this class. We then introduce an example class of dissipative quantum systems that is provably universal. Numerical experiments illustrate that with a small number of qubits, this class can achieve comparable performance to classical learning schemes with a large number of tunable parameters. Further numerical analysis suggests that the exponentially increasing Hilbert space presents a potential resource for dissipative quantum systems to surpass classical learning schemes for input-output maps.
99 - Aivar Sootla 2015
In this paper, we consider the systems with trajectories originating in the nonnegative orthant becoming nonnegative after some finite time transient. First we consider dynamical systems (i.e., fully observable systems with no inputs), which we call eventually positive. We compute forward-invariant cones and Lyapunov functions for these systems. We then extend the notion of eventually positive systems to the input-output system case. Our extension is performed in such a manner, that some valuable properties of classical internally positive input-output systems are preserved. For example, their induced norms can be computed using linear programming and the energy functions have nonnegative derivatives.
We consider the effect of parametric uncertainty on properties of Linear Time Invariant systems. Traditional approaches to this problem determine the worst-case gains of the system over the uncertainty set. Whilst such approaches are computationally tractable, the upper bound obtained is not necessarily informative in terms of assessing the influence of the parameters on the system performance. We present theoretical results that lead to simple, convex algorithms producing parametric bounds on the $mathcal{L}_2$-induced input-to-output and state-to-output gains as a function of the uncertain parameters. These bounds provide quantitative information about how the uncertainty affects the system.
Recent developments surrounding resource theories have shown that any quantum state or measurement resource, with respect to a convex (and compact) set of resourceless objects, provides an advantage in a tailored subchannel or state discrimination ta sk, respectively. Here we show that an analogous, more general result is also true in the case of dynamical quantum resources, i.e., channels and instruments. In the scenario we consider, the tasks associated to a resource are input-output games. The advantage a resource provides in these games is naturally quantified by a generalized robustness measure. We illustrate our approach by applying it to a broad collection of examples, including classical and measure-and-prepare channels, measurement and channel incompatibility, LOCC operations, and steering, as well as discussing its applicability to other resources in, e.g., quantum thermodynamics. We finish by showing that our approach generalizes to higher-order dynamics where it can be used, for example, to witness causal properties of supermaps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا