ترغب بنشر مسار تعليمي؟ اضغط هنا

Long time oscillation of solutions of nonlinear Schrodinger equations near minimal mass ground state

166   0   0.0 ( 0 )
 نشر من قبل Masaya Maeda
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the long time dynamics of radially symmetric solutions of nonlinear Schrodinger equations (NLS) having a minimal mass ground state. In particular, we show that there exist solutions with initial data near the minimal mass ground state that oscillate for long time. More precisely, we introduce a coordinate defined near the minimal mass ground state which consists of finite and infinite dimensional part associated to the discrete and continuous part of the linearized operator. Then, we show that the finite dimensional part, two dimensional, approximately obeys Newtons equation of motion for a particle in an anharmonic potential well. Showing that the infinite dimensional part is well separated from the finite dimensional part, we will have long time oscillation.



قيم البحث

اقرأ أيضاً

82 - Bobo Hua , Wendi Xu 2021
In this paper, we study the nonlinear Schr{o}dinger equation $ -Delta u+V(x)u=f(x,u) $on the lattice graph $ mathbb{Z}^{N}$. Using the Nehari method, we prove that when $f$ satisfies some growth conditions and the potential function $V$ is periodic o r bounded, the above equation admits a ground state solution. Moreover, we extend our results from $mathbb{Z}^{N}$ to quasi-transitive graphs.
143 - Thomas Alazard 2007
We consider the small time semi-classical limit for nonlinear Schrodinger equations with defocusing, smooth, nonlinearity. For a super-cubic nonlinearity, the limiting system is not directly hyperbolic, due to the presence of vacuum. To overcome this issue, we introduce new unknown functions, which are defined nonlinearly in terms of the wave function itself. This approach provides a local version of the modulated energy functional introduced by Y.Brenier. The system we obtain is hyperbolic symmetric, and the justification of WKB analysis follows.
355 - Remi Carles 2008
In this survey, our aim is to emphasize the main known limitations to the use of Wigner measures for Schrodinger equations. After a short review of successful applications of Wigner measures to study the semi-classical limit of solutions to Schroding er equations, we list some examples where Wigner measures cannot be a good tool to describe high frequency limits. Typically, the Wigner measures may not capture effects which are not negligible at the pointwise level, or the propagation of Wigner measures may be an ill-posed problem. In the latter situation, two families of functions may have the same Wigner measures at some initial time, but different Wigner measures for a larger time. In the case of systems, this difficulty can partially be avoided by considering more refined Wigner measures such as two-scale Wigner measures; however, we give examples of situations where this quadratic approach fails.
368 - Remi Carles 2009
We consider the propagation of wave packets for the nonlinear Schrodinger equation, in the semi-classical limit. We establish the existence of a critical size for the initial data, in terms of the Planck constant: if the initial data are too small, t he nonlinearity is negligible up to the Ehrenfest time. If the initial data have the critical size, then at leading order the wave function propagates like a coherent state whose envelope is given by a nonlinear equation, up to a time of the same order as the Ehrenfest time. We also prove a nonlinear superposition principle for these nonlinear wave packets.
The long-time asymptotic behavior of solutions to the focusing nonlinear Schrodinger (NLS) equation on the line with symmetric, nonzero boundary conditions at infinity is studied in the case of initial conditions that allow for the presence of discre te spectrum. The results of the analysis provide the first rigorous characterization of the nonlinear interactions between solitons and the coherent oscillating structures produced by localized perturbations in a modulationally unstable medium. The study makes crucial use of the inverse scattering transform for the focusing NLS equation with nonzero boundary conditions, as well as of the nonlinear steepest descent method of Deift and Zhou for oscillatory Riemann-Hilbert problems. Previously, it was shown that in the absence of discrete spectrum the $xt$-plane decomposes asymptotically in time into two types of regions: a left far-field region and a right far-field region, where to leading order the solution equals the condition at infinity up to a phase shift, and a central region where the asymptotic behavior is described by slowly modulated periodic oscillations. Here, it is shown that in the presence of a conjugate pair of discrete eigenvalues in the spectrum a similar coherent oscillatory structure emerges but, in addition, three different interaction outcomes can arise depending on the precise location of the eigenvalues: (i) soliton transmission, (ii) soliton trapping, and (iii) a mixed regime in which the soliton transmission or trapping is accompanied by the formation of an additional, nondispersive localized structure akin to a soliton-generated wake. The soliton-induced position and phase shifts of the oscillatory structure are computed, and the analytical results are validated by a set of accurate numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا