ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the long time dynamics of radially symmetric solutions of nonlinear Schrodinger equations (NLS) having a minimal mass ground state. In particular, we show that there exist solutions with initial data near the minimal mass ground state that oscillate for long time. More precisely, we introduce a coordinate defined near the minimal mass ground state which consists of finite and infinite dimensional part associated to the discrete and continuous part of the linearized operator. Then, we show that the finite dimensional part, two dimensional, approximately obeys Newtons equation of motion for a particle in an anharmonic potential well. Showing that the infinite dimensional part is well separated from the finite dimensional part, we will have long time oscillation.
In this paper, we study the nonlinear Schr{o}dinger equation $ -Delta u+V(x)u=f(x,u) $on the lattice graph $ mathbb{Z}^{N}$. Using the Nehari method, we prove that when $f$ satisfies some growth conditions and the potential function $V$ is periodic o
We consider the small time semi-classical limit for nonlinear Schrodinger equations with defocusing, smooth, nonlinearity. For a super-cubic nonlinearity, the limiting system is not directly hyperbolic, due to the presence of vacuum. To overcome this
In this survey, our aim is to emphasize the main known limitations to the use of Wigner measures for Schrodinger equations. After a short review of successful applications of Wigner measures to study the semi-classical limit of solutions to Schroding
We consider the propagation of wave packets for the nonlinear Schrodinger equation, in the semi-classical limit. We establish the existence of a critical size for the initial data, in terms of the Planck constant: if the initial data are too small, t
The long-time asymptotic behavior of solutions to the focusing nonlinear Schrodinger (NLS) equation on the line with symmetric, nonzero boundary conditions at infinity is studied in the case of initial conditions that allow for the presence of discre