ﻻ يوجد ملخص باللغة العربية
The number of Ultra-Diffuse Galaxies (UDGs) in clusters is of significant importance to constrain models of their formation and evolution. Furthermore, their distribution inside clusters may tell us something about their interactions with their environments. In this work we revisit the abundance of UDGs in a more consistent way than in previous studies. We add new data of UDGs in eight clusters from the Kapteyn IAC WEAVE INT Clusters Survey (KIWICS), covering a mass range in which only a few clusters have been studied before, and complement these with a compilation of works in the literature to homogeneously study the relation between the number of UDGs and the mass of their host cluster. Overall, we find that the slope of the number of UDGs$-$cluster mass relation is consistent with being sublinear when considering galaxy groups or linear if they are excluded, but we argue that most likely the behavior is sublinear. When systematically studying the relation between the projected distance to the innermost UDG and M$_{200}$ for each cluster, we find hints that favor a picture in which massive clusters destroy UDGs in their centres.
We study the population of ultra-diffuse galaxies (UDGs) in a set of eight nearby ($z <$ 0.035) galaxy clusters, from the Kapteyn IAC WEAVE INT Clusters Survey ($texttt{KIWICS}$). We report the discovery of 442 UDG candidates in our eight field of vi
We analyse a sample of twelve galaxy clusters, from the Kapteyn IAC WEAVE INT Cluster Survey (KIWICS) looking for dwarf galaxy candidates. By using photometric data in the $r$ and $g$ bands from the Wide Field Camera (WFC) at the 2.5-m Isaac Newton t
Using deep g,r,i imaging from the VEGAS survey, we have searched for ultra diffuse galaxies (UDGs) in the IC 1459 group. Assuming they are group members, we identify 9 galaxies with physical sizes and surface brightnesses that match the UDG criteria
Many ultra diffuse galaxies (UDGs) have now been identified in clusters of galaxies. However, the number of nearby UDGs suitable for detailed follow-up remain rare. Our aim is to begin to identify UDGs in the environments of nearby bright early-type