ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast dynamics of spin and orbital correlations in quantum materials: an energy- and momentum-resolved perspective

101   0   0.0 ( 0 )
 نشر من قبل Mark Dean
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many remarkable properties of quantum materials emerge from states with intricate coupling between the charge, spin and orbital degrees of freedom. Ultrafast photo-excitations of these materials hold great promise for understanding and controlling the properties of these states. Here we introduce time-resolved resonant inelastic X-ray scattering (trRIXS) as a means of measuring charge, spin and orbital excitations out of equilibrium. These excitations encode the correlations and interactions that determine the detailed properties of the states generated. After outlining the basic principles and instrumentation of tr-RIXS, we review our first observations of transient antiferromagnetic correlations in quasi-two dimensions in a photo-excited Mott insulator and present possible future routes of this fast-developing technique. The increasing number of X-ray free electron laser facilities not only enables tackling long-standing fundamental scientific problems, but also promises to unleash novel inelastic X-ray scattering spectroscopies



قيم البحث

اقرأ أيضاً

130 - M. P. M. Dean , Yue Cao , X. Liu 2016
Measuring how the magnetic correlations throughout the Brillouin zone evolve in a Mott insulator as charges are introduced dramatically improved our understanding of the pseudogap, non-Fermi liquids and high $T_C$ superconductivity. Recently, photoex citation has been used to induce similarly exotic states transiently. However, understanding how these states emerge has been limited because of a lack of available probes of magnetic correlations in the time domain, which hinders further investigation of how light can be used to control the properties of solids. Here we implement magnetic resonant inelastic X-ray scattering at a free electron laser, and directly determine the magnetization dynamics after photo-doping the Mott insulator Sr$_2$IrO$_4$. We find that the non-equilibrium state 2~ps after the excitation has strongly suppressed long-range magnetic order, but hosts photo-carriers that induce strong, non-thermal magnetic correlations. The magnetism recovers its two-dimensional (2D) in-plane Neel correlations on a timescale of a few ps, while the three-dimensional (3D) long-range magnetic order restores over a far longer, fluence-dependent timescale of a few hundred ps. The dramatic difference in these two timescales, implies that characterizing the dimensionality of magnetic correlations will be vital in our efforts to understand ultrafast magnetic dynamics.
Phase transitions driven by ultrashort laser pulses have attracted interest both for understanding the fundamental physics of phase transitions and for potential new data storage or device applications. In many cases these transitions involve transie nt states that are different from those seen in equilibrium. To understand the microscopic properties of these states, it is useful to develop elementally selective probing techniques that operate in the time domain. Here we show fs-time-resolved measurements of V Ledge Resonant Inelastic X-Ray Scattering (RIXS) from the insulating phase of the Mott- Hubbard material V2O3 after ultrafast laser excitation. The probed orbital excitations within the d-shell of the V ion show a sub-ps time response, which evolve at later times to a state that appears electronically indistinguishable from the high-temperature metallic state. Our results demonstrate the potential for RIXS spectroscopy to study the ultrafast orbital dynamics in strongly correlated materials.
We use time- and angle-resolved photoemission spectroscopy to characterize the dynamics of the energy gap in superconducting Bi2Sr2CaCu2O8+delta (Bi2212). Photoexcitation drives the system into a nonequilibrium pseudogap state: Near the Brillouin zon e diagonal (inside the normal-state Fermi arc), the gap completely closes for a pump fluence beyond F = 15 {mu}J/cm^2; toward the Brillouin zone face (outside the Fermi arc), it remains open to at least 24 {mu}J/cm^2. This strongly anisotropic gap response may indicate multiple competing ordering tendencies in Bi2212. Despite these contrasts, the gap recovers with relatively momentum-independent dynamics at all probed momenta, which shows the persistent influence of superconductivity both inside and outside the Fermi arc.
193 - B. Keimer , D. Casa , A. Ivanov 2000
A neutron scattering study of the Mott-Hubbard insulator LaTiO$_{3}$ (T$_{{rm N}}=132$ K) reveals a spin wave spectrum that is well described by a nearest-neighbor superexchange constant $J=15.5$ meV and a small Dzyaloshinskii-Moriya interaction ($D= 1.1$ meV). The nearly isotropic spin wave spectrum is surprising in view of the absence of a static Jahn-Teller distortion that could quench the orbital angular momentum, and it may indicate strong orbital fluctuations. A resonant x-ray scattering study has uncovered no evidence of orbital order in LaTiO$_{3}$.
We investigate the interplay between spin and orbital correlations in monolayer and bilayer manganites using an effective spin-orbital t-J model which treats explicitly the e_g orbital degrees of freedom coupled to classical t_{2g} spins. Using finit e clusters with periodic boundary conditions, the orbital many-body problem is solved by exact diagonalization, either by optimizing spin configuration at zero temperature, or by using classical Monte-Carlo for the spin subsystem at finite temperature. In undoped two-dimensional clusters, a complementary behavior of orbital and spin correlations is found - the ferromagnetic spin order coexists with alternating orbital order, while the antiferromagnetic spin order, triggered by t_{2g} spin superexchange, coexists with ferro-orbital order. With finite crystal field term, we introduce a realistic model for La_{1-x}Sr_{1+x}MnO_4, describing a gradual change from predominantly out-of-plane 3z^2-r^2 to in-plane x^2-y^2 orbital occupation under increasing doping. The present electronic model is sufficient to explain the stability of the CE phase in monolayer manganites at doping x=0.5, and also yields the C-type antiferromagnetic phase found in Nd_{1-x}Sr_{1+x}MnO_4 at high doping. Also in bilayer manganites magnetic phases and the accompanying orbital order change with increasing doping. Here the model predicts C-AF and G-AF phases at high doping x>0.75, as found experimentally in La_{2-2x}Sr_{1+2x}Mn_2O_7.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا