Relations between convolutions and transforms in operator-valued free probability


الملخص بالإنكليزية

We introduce a class of independence relations, which include free, Boolean and monotone independence, in operator valued probability. We show that this class of independence relations have a matricial extension property so that we can easily study their associated convolutions via Voiculescus fully matricial function theory. Based the matricial extension property, we show that many results can be generalized to multi-variable cases. Besides free, Boolean and monotone independence convolutions, we will focus on two important convolutions, which are orthogonal and subordination additive convolutions. We show that the operator-valued subordination functions, which come from the free additive convolutions or the operator-valued free convolution powers, are reciprocal Cauchy transforms of operator-valued random variables which are uniquely determined up to Voiculescus fully matricial function theory. In the end, we study relations between certain convolutions and transforms in $C^*$-operator valued probability.

تحميل البحث