ﻻ يوجد ملخص باللغة العربية
Lascoux stated that the type A Kostka-Foulkes polynomials K_{lambda,mu}(t) expand positively in terms of so-called atomic polynomials. For any semisimple Lie algebra, the former polynomial is a t-analogue of the multiplicity of the dominant weight mu in the irreducible representation of highest weight lambda. We formulate the atomic decomposition in arbitrary type, and view it as a strengthening of the monotonicity of K_{lambda,mu}(t). We also define a combinatorial version of the atomic decomposition, as a decomposition of a modified crystal graph. We prove that this stronger version holds in type A (which provides a new, conceptual approach to Lascouxs statement), in types B, C, and D in a stable range for t=1, as well as in some other cases, while we conjecture that it holds more generally. Another conjecture stemming from our work leads to an efficient computation of K_{lambda,mu}(t). We also give a geometric interpretation.
Let $p$ be any prime. Let $P_n$ be a Sylow $p$-subgroup of the symmetric group $S_n$. Let $phi$ and $psi$ be linear characters of $P_n$ and let $N$ be the normaliser of $P_n$ in $S_n$. In this article we show that the inductions of $phi$ and $psi$ to
For $G={rm GL}(n,q)$, the proportion $P_{n,q}$ of pairs $(chi,g)$ in ${rm Irr}(G)times G$ with $chi(g) eq 0$ satisfies $P_{n,q}to 0$ as $ntoinfty$.
We give a new characterization of Littlewood-Richardson-Stembridge tableaux for Schur $P$-functions by using the theory of $mf{q}(n)$-crystals. We also give alternate proofs of the Schur $P$-expansion of a skew Schur function due to Ardila and Serran
The crystals for a finite-dimensional complex reductive Lie algebra $mathfrak{g}$ encode the structure of its representations, yet can also reveal surprising new structure of their own. We study the cactus group $C_{mathfrak{g}}$, constructed using t
We present a list of ``local axioms and an explicit combinatorial construction for the regular $B_2$-crystals (crystal graphs of highest weight integrable modules over $U_q(sp_4)$). Also a new combinatorial model for these crystals is developed.