ﻻ يوجد ملخص باللغة العربية
Convolutional neural networks are able to perform a hierarchical learning process starting with local features. However, a limited attention is paid to enhancing such elementary level features like edges. We propose and evaluate two wavelet-based edge feature enhancement methods to preprocess the input images to convolutional neural networks. The first method develops feature enhanced representations by decomposing the input images using wavelet transform and limited reconstructing subsequently. The second method develops such feature enhanced inputs to the network using local modulus maxima of wavelet coefficients. For each method, we have developed a new preprocessing layer by implementing each purposed method and have appended to the network architecture. Our empirical evaluations demonstrate that the proposed methods are outperforming the baselines and previously published work with significant accuracy gains.
Dense pixelwise prediction such as semantic segmentation is an up-to-date challenge for deep convolutional neural networks (CNNs). Many state-of-the-art approaches either tackle the loss of high-resolution information due to pooling in the encoder st
Extracting multi-scale information is key to semantic segmentation. However, the classic convolutional neural networks (CNNs) encounter difficulties in achieving multi-scale information extraction: expanding convolutional kernel incurs the high compu
We propose a collection of three shift-based primitives for building efficient compact CNN-based networks. These three primitives (channel shift, address shift, shortcut shift) can reduce the inference time on GPU while maintains the prediction accur
Graph convolutional networks (GCNs) are widely used in graph-based applications such as graph classification and segmentation. However, current GCNs have limitations on implementation such as network architectures due to their irregular inputs. In co
We propose a convolutional neural network (CNN) architecture for image classification based on subband decomposition of the image using wavelets. The proposed architecture decomposes the input image spectra into multiple critically sampled subbands,