ﻻ يوجد ملخص باللغة العربية
Short-period gas giants (hot Jupiters) on circular orbits are expected to be tidally locked into synchronous rotation, with permanent daysides that face their host stars, and permanent nightsides that face the darkness of space. Thermal flux from the nightside of several hot Jupiters has been measured, meaning energy is transported from day to night in some fashion. However, it is not clear exactly what the physical information from these detections reveals about the atmospheric dynamics of hot Jupiters. Here we show that the nightside effective temperatures of a sample of 12 hot Jupiters are clustered around 1100 K, with a slight upward trend as a function of stellar irradiation. The clustering is not predicted by cloud-free atmospheric circulation models. This result can be explained if most hot Jupiters have nightside clouds that are optically thick to outgoing longwave radiation and hence radiate at the cloud-top temperature, and progressively disperse for planets receiving greater incident flux. Phase curve observations at a greater range of wavelengths are crucial to determining the extent of cloud coverage, as well as the cloud composition on hot Jupiter nightsides.
Ultra-hot giant exoplanets receive thousands of times Earths insolation. Their high-temperature atmospheres (>2,000 K) are ideal laboratories for studying extreme planetary climates and chemistry. Daysides are predicted to be cloud-free, dominated by
We report the discovery of a new ultra-short period hot Jupiter from the Next Generation Transit Survey. NGTS-6b orbits its star with a period of 21.17~h, and has a mass and radius of $1.330^{+0.024}_{-0.028}$mjup, and $1.271^{+0.197}_{-0.188}$rjup,
We announce the discovery of KELT-16b, a highly irradiated, ultra-short period hot Jupiter transiting the relatively bright ($V = 11.7$) star TYC 2688-1839-1. A global analysis of the system shows KELT-16 to be an F7V star with $T_textrm{eff} = 6236p
The recent discoveries of massive planets on ultra-wide orbits of HR 8799 (Marois et al. 2008) and Fomalhaut (Kalas et al. 2008) present a new challenge for planet formation theorists. Our goal is to figure out which of three giant planet formation m
In 2015, K2 observations of the bright (V = 8.9, K = 7.7) star HIP 41378 revealed a rich system of at least five transiting exoplanets, ranging in size from super-Earths to gas giants. The 2015 K2 observations only spanned 74.8 days, and the outer th