ﻻ يوجد ملخص باللغة العربية
High-order harmonics generated by bicircular laser field have helicities which alternate between $+1$ and $-1$. In order to generate circularly polarized high-harmonic pulses, which are important for applications, it is necessary to achieve asymmetry in emission of harmonics having opposite helicities. We theoretically investigated a wide range of bicircular field component intensities and found areas where both the harmonic intensity is high and the helicity asymmetry is large. We investigated the cases of $omega$--$2omega$ and $omega$--$3omega$ bicircular fields and atoms having the $s$ and $p$ ground states, exemplified by He and Ne atoms, respectively. We have shown that for He atoms strong high harmonics having positive helicity can be generated using $omega$--$3omega$ bicircular field with a much stronger second field component. For Ne atoms the helicity asymmetry can be large in a wider range of the driving field component intensities and for higher harmonic orders. For the stronger second field component the harmonic intensity is higher and the helicity asymmetry parameter is larger for higher harmonic orders. The results for Ne atoms are illustrated with the parametric plots of elliptically polarized attosecond high-harmonic field.
High-order harmonic generation by a bicircular field, which consists of two coplanar counter-rotating circularly polarized fields of frequency $romega$ and $somega$ ($r$ and $s$ are integers), is investigated for a polyatomic molecule. This field pos
It is demonstrated by single-atom simulations that X-ray signals in the 3.4 to 4 keV region from an 8 micron laser driven high harmonic generation can be increased by more than two orders of magnitude when a single-cycle pulse centered at 800 nm is a
The present work reports on the generation of short-pulse coherent extreme ultraviolet radiation of controlled polarization. The proposed strategy is based on high-order harmonics generated in pre-aligned molecules. Field-free molecular alignment pro
High-harmonics generation spectroscopy is a promising tool for resolving electron dynamics and structure in atomic and molecular systems. This scheme, commonly described by the strong field approximation, requires a deep insight into the basic mechan
We present a method to distinguish the high harmonics generated in individual half-cycle of the driving laser pulse by mixing a weak ultraviolet pulse, enabling one to observe the cutoff of each half-cycle harmonic. We show that the detail informatio