ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental engineering of arbitrary qudit states with discrete-time quantum walks

78   0   0.0 ( 0 )
 نشر من قبل Fabio Sciarrino
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The capability to generate and manipulate quantum states in high-dimensional Hilbert spaces is a crucial step for the development of quantum technologies, from quantum communication to quantum computation. One-dimensional quantum walk dynamics represents a valid tool in the task of engineering arbitrary quantum states. Here we affirm such potential in a linear-optics platform that realizes discrete-time quantum walks in the orbital angular momentum degree of freedom of photons. Different classes of relevant qudit states in a six-dimensional space are prepared and measured, confirming the feasibility of the protocol. Our results represent a further investigation of quantum walk dynamics in photonics platforms, paving the way for the use of such a quantum state-engineering toolbox for a large range of applications.



قيم البحث

اقرأ أيضاً

Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen fo r implementation, and a general framework is still missing. Here we show that coined quantum walks on a line, which represent a framework general enough to encompass a variety of different platforms, can be used for quantum state engineering of arbitrary superpositions of the walkers sites. We achieve this goal by identifying a set of conditions that fully characterize the reachable states in the space comprising walker and coin, and providing a method to efficiently compute the corresponding set of coin parameters. We assess the feasibility of our proposal by identifying a linear optics experiment based on photonic orbital angular momentum technology.
Quantum walk (QW) is the quantum analog of the random walk. QW is an integral part of the development of numerous quantum algorithms. Hence, an in-depth understanding of QW helps us to grasp the quantum algorithms. We revisit the one-dimensional disc rete-time QW and discuss basic steps in detail by incorporating the most general coin operator. We investigate the impact of each parameter of the general coin operator on the probability distribution of the quantum walker. We show that by tuning the parameters of the general coin, one can regulate the probability distribution of the walker. We provide an algorithm for the one-dimensional quantum walk driven by the general coin operator. The study conducted on general coin operator also includes the popular coins -- Hadamard, Grover, and Fourier coins.
We make and generalize the observation that summing of probability amplitudes of a discrete-time quantum walk over partitions of the walking graph consistent with the step operator results in a unitary evolution on the reduced graph which is also a q uantum walk. Since the effective walking graph of the projected walk is not necessarily simpler than the original, this may bring new insights into the dynamics of some kinds of quantum walks using known results from thoroughly studied cases like Euclidean lattices. We use abstract treatment of the walking space and walker displacements in aim for a generality of the presented statements. Using this approach we also identify some pathological cases in which the projection mapping breaks down. For walks on lattices, the operation typically results in quantum walks with hyper-dimensional coin spaces. Such walks can, conversely, be viewed as projections of walks on inaccessible, larger spaces, and their properties can be inferred from the parental walk. We show that this is is the case for a lazy quantum walk, a walk with large coherent jumps and a walk on a circle with a twisted boundary condition. We also discuss the relation of this theory to the time-multiplexing optical implementations of quantum walks. Moreover, this manifestly irreversible operation can, in some cases and with a minor adjustment, be undone, and a quantum walk can be reconstructed from a set of its projections.
This theoretical proposal investigates how resonant interactions occurring when a harmonic oscillator is fed with a stream of entangled qubits allow us to stabilize squeezed states of the harmonic oscillator. We show that the properties of the squeez ed state stabilized by this engineered reservoir, including the squeezing strength, can be tuned at will through the parameters of the input qubits, albeit in tradeoff with the convergence rate. We also discuss the influence of the type of entanglement in the input, from a pairwise case to a more widely distributed case. This paper can be read in two ways: either as a proposal to stabilize squeezed states, or as a step towards treating quantum systems with time-entangled reservoir inputs.
We study a series of one-dimensional discrete-time quantum-walk models labeled by half integers $j=1/2, 1, 3/2, ...$, introduced by Miyazaki {it et al.}, each of which the walkers wave function has $2j+1$ components and hopping range at each time ste p is $2j$. In long-time limit the density functions of pseudovelocity-distributions are generally given by superposition of appropriately scaled Konnos density function. Since Konnos density function has a finite open support and it diverges at the boundaries of support, limit distribution of pseudovelocities in the $(2j+1)$-component model can have $2j+1$ pikes, when $2j+1$ is even. When $j$ becomes very large, however, we found that these pikes vanish and a universal and monotone convex structure appears around the origin in limit distributions. We discuss a possible route from quantum walks to classical diffusion associated with the $j to infty$ limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا