Entropy of a quantum channel


الملخص بالإنكليزية

The von Neumann entropy of a quantum state is a central concept in physics and information theory, having a number of compelling physical interpretations. There is a certain perspective that the most fundamental notion in quantum mechanics is that of a quantum channel, as quantum states, unitary evolutions, measurements, and discarding of quantum systems can each be regarded as certain kinds of quantum channels. Thus, an important goal is to define a consistent and meaningful notion of the entropy of a quantum channel. Motivated by the fact that the entropy of a state $rho$ can be formulated as the difference of the number of physical qubits and the relative entropy distance between $rho$ and the maximally mixed state, here we define the entropy of a channel $mathcal{N}$ as the difference of the number of physical qubits of the channel output with the relative entropy distance between $mathcal{N}$ and the completely depolarizing channel. We prove that this definition satisfies all of the axioms, recently put forward in [Gour, IEEE Trans. Inf. Theory 65, 5880 (2019)], required for a channel entropy function. The task of quantum channel merging, in which the goal is for the receiver to merge his share of the channel with the environments share, gives a compelling operational interpretation of the entropy of a channel. The entropy of a channel can be negative for certain channels, but this negativity has an operational interpretation in terms of the channel merging protocol. We define Renyi and min-entropies of a channel and prove that they satisfy the axioms required for a channel entropy function. Among other results, we also prove that a smoothed version of the min-entropy of a channel satisfies the asymptotic equipartition property.

تحميل البحث