ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Decision Rule Approximations for Multi-Stage Robust Optimization via Copositive Programming

169   0   0.0 ( 0 )
 نشر من قبل Guanglin Xu
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study decision rule approximations for generic multi-stage robust linear optimization problems. We consider linear decision rules for the case when the objective coefficients, the recourse matrices, and the right-hand sides are uncertain, and consider quadratic decision rules for the case when only the right-hand sides are uncertain. The resulting optimization problems are NP-hard but amenable to copositive programming reformulations that give rise to tight conservative approximations. We further enhance these approximations through new piecewise decision rule schemes. Finally, we prove that our proposed approximations are tighter than the state-of-the-art schemes and demonstrate their superiority through numerical experiments.



قيم البحث

اقرأ أيضاً

In this paper, we consider multi-stage stochastic optimization problems with convex objectives and conic constraints at each stage. We present a new stochastic first-order method, namely the dynamic stochastic approximation (DSA) algorithm, for solvi ng these types of stochastic optimization problems. We show that DSA can achieve an optimal ${cal O}(1/epsilon^4)$ rate of convergence in terms of the total number of required scenarios when applied to a three-stage stochastic optimization problem. We further show that this rate of convergence can be improved to ${cal O}(1/epsilon^2)$ when the objective function is strongly convex. We also discuss variants of DSA for solving more general multi-stage stochastic optimization problems with the number of stages $T > 3$. The developed DSA algorithms only need to go through the scenario tree once in order to compute an $epsilon$-solution of the multi-stage stochastic optimization problem. As a result, the memory required by DSA only grows linearly with respect to the number of stages. To the best of our knowledge, this is the first time that stochastic approximation type methods are generalized for multi-stage stochastic optimization with $T ge 3$.
We study the problem of finding the Lowner-John ellipsoid, i.e., an ellipsoid with minimum volume that contains a given convex set. We reformulate the problem as a generalized copositive program, and use that reformulation to derive tractable semidef inite programming approximations for instances where the set is defined by affine and quadratic inequalities. We prove that, when the underlying set is a polytope, our method never provides an ellipsoid of higher volume than the one obtained by scaling the maximum volume inscribed ellipsoid. We empirically demonstrate that our proposed method generates high-quality solutions faster than solving the problem to optimality. Furthermore, we outperform the existing approximation schemes in terms of solution time and quality. We present applications of our method to obtain piecewise-linear decision rule approximations for dynamic distributionally robust problems with random recourse, and to generate ellipsoidal approximations for the set of reachable states in a linear dynamical system when the set of allowed controls is a polytope.
Adaptive robust optimization problems are usually solved approximately by restricting the adaptive decisions to simple parametric decision rules. However, the corresponding approximation error can be substantial. In this paper we show that two-stage robust and distributionally robust linear programs can often be reformulated exactly as conic programs that scale polynomially with the problem dimensions. Specifically, when the ambiguity set constitutes a 2-Wasserstein ball centered at a discrete distribution, then the distributionally robust linear program is equivalent to a copositive program (if the problem has complete recourse) or can be approximated arbitrarily closely by a sequence of copositive programs (if the problem has sufficiently expensive recourse). These results directly extend to the classical robust setting and motivate strong tractable approximations of two-stage problems based on semidefinite approximations of the copositive cone. We also demonstrate that the two-stage distributionally robust optimization problem is equivalent to a tractable linear program when the ambiguity set constitutes a 1-Wasserstein ball centered at a discrete distribution and there are no support constraints.
128 - Xian Yu , Siqian Shen 2020
We study multistage distributionally robust mixed-integer programs under endogenous uncertainty, where the probability distribution of stage-wise uncertainty depends on the decisions made in previous stages. We first consider two ambiguity sets defin ed by decision-dependent bounds on the first and second moments of uncertain parameters and by mean and covariance matrix that exactly match decision-dependent empirical ones, respectively. For both sets, we show that the subproblem in each stage can be recast as a mixed-integer linear program (MILP). Moreover, we extend the general moment-based ambiguity set in (Delage and Ye, 2010) to the multistage decision-dependent setting, and derive mixed-integer semidefinite programming (MISDP) reformulations of stage-wise subproblems. We develop methods for attaining lower and upper bounds of the optimal objective value of the multistage MISDPs, and approximate them using a series of MILPs. We deploy the Stochastic Dual Dynamic integer Programming (SDDiP) method for solving the problem under the three ambiguity sets with risk-neutral or risk-averse objective functions, and conduct numerical studies on multistage facility-location instances having diverse sizes under different parameter and uncertainty settings. Our results show that the SDDiP quickly finds optimal solutions for moderate-sized instances under the first two ambiguity sets, and also finds good approximate bounds for the multistage MISDPs derived under the third ambiguity set. We also demonstrate the efficacy of incorporating decision-dependent distributional ambiguity in multistage decision-making processes.
We study the problem of policy synthesis for uncertain partially observable Markov decision processes (uPOMDPs). The transition probability function of uPOMDPs is only known to belong to a so-called uncertainty set, for instance in the form of probab ility intervals. Such a model arises when, for example, an agent operates under information limitation due to imperfect knowledge about the accuracy of its sensors. The goal is to compute a policy for the agent that is robust against all possible probability distributions within the uncertainty set. In particular, we are interested in a policy that robustly ensures the satisfaction of temporal logic and expected reward specifications. We state the underlying optimization problem as a semi-infinite quadratically-constrained quadratic program (QCQP), which has finitely many variables and infinitely many constraints. Since QCQPs are non-convex in general and practically infeasible to solve, we resort to the so-called convex-concave procedure to convexify the QCQP. Even though convex, the resulting optimization problem still has infinitely many constraints and is NP-hard. For uncertainty sets that form convex polytopes, we provide a transformation of the problem to a convex QCQP with finitely many constraints. We demonstrate the feasibility of our approach by means of several case studies that highlight typical bottlenecks for our problem. In particular, we show that we are able to solve benchmarks with hundreds of thousands of states, hundreds of different observations, and we investigate the effect of different levels of uncertainty in the models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا