ﻻ يوجد ملخص باللغة العربية
We study decision rule approximations for generic multi-stage robust linear optimization problems. We consider linear decision rules for the case when the objective coefficients, the recourse matrices, and the right-hand sides are uncertain, and consider quadratic decision rules for the case when only the right-hand sides are uncertain. The resulting optimization problems are NP-hard but amenable to copositive programming reformulations that give rise to tight conservative approximations. We further enhance these approximations through new piecewise decision rule schemes. Finally, we prove that our proposed approximations are tighter than the state-of-the-art schemes and demonstrate their superiority through numerical experiments.
In this paper, we consider multi-stage stochastic optimization problems with convex objectives and conic constraints at each stage. We present a new stochastic first-order method, namely the dynamic stochastic approximation (DSA) algorithm, for solvi
We study the problem of finding the Lowner-John ellipsoid, i.e., an ellipsoid with minimum volume that contains a given convex set. We reformulate the problem as a generalized copositive program, and use that reformulation to derive tractable semidef
Adaptive robust optimization problems are usually solved approximately by restricting the adaptive decisions to simple parametric decision rules. However, the corresponding approximation error can be substantial. In this paper we show that two-stage
We study multistage distributionally robust mixed-integer programs under endogenous uncertainty, where the probability distribution of stage-wise uncertainty depends on the decisions made in previous stages. We first consider two ambiguity sets defin
We study the problem of policy synthesis for uncertain partially observable Markov decision processes (uPOMDPs). The transition probability function of uPOMDPs is only known to belong to a so-called uncertainty set, for instance in the form of probab