ﻻ يوجد ملخص باللغة العربية
We study a nonlinear interferometer consisting of two consecutive parametric amplifiers, where all three optical fields (pump, signal and idler) are treated quantum mechanically, allowing for pump depletion and other quantum phenomena. The interaction of all three fields in the final amplifier leads to an interference pattern from which we extract the phase uncertainty. We find that the phase uncertainty oscillates around a saturation level that decreases as the mean number $N$ of input pump photons increases. For optimal interaction strengths, we also find a phase uncertainty below the shot-noise level and obtain a Heisenberg scaling $1/N$. This is in contrast to the conventional treatment within the parametric approximation, where the Heisenberg scaling is observed as a function of the number of down-converted photons inside the interferometer.
SU(1,1) interferometers, based on the usage of nonlinear elements, are superior to passive interferometers in phase sensitivity. However, the SU(1,1) interferometer cannot make full use of photons carrying phase information as the second nonlinear el
We theoretically study the phase sensitivity of the SU(1,1) interferometer with a coherent light together with a squeezed vacuum input case using the method of homodyne. We find that the homodyne detection has better sensitivity than the intensity de
The phase uncertainty of an unseeded nonlinear interferometer, where the output of one nonlinear crystal is transmitted to the input of a second crystal that analyzes it, is commonly said to be below the shot-noise level but highly dependent on detec
Control over the spectral properties of the bright squeezed vacuum (BSV), a highly multimode non-classical macroscopic state of light that can be generated through high-gain parametric down conversion, is crucial for many applications. In particular,
The theory of phase control of coherence, entanglement and quantum steering is developed for an optomechanical system composed of a single mode cavity containing a partially transmitting dielectric membrane and driven by short laser pulses. The close