ترغب بنشر مسار تعليمي؟ اضغط هنا

Cooling in the X-ray halo of the rotating, massive early-type galaxy NGC 7049

88   0   0.0 ( 0 )
 نشر من قبل Anna Jur\\'a\\v{n}ov\\'a
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The relative importance of the physical processes shaping the thermodynamics of the hot gas permeating rotating, massive early-type galaxies is expected to be different from that in non-rotating systems. Here, we report the results of the analysis of XMM-Newton data for the massive, lenticular galaxy NGC 7049. The galaxy harbours a dusty disc of cool gas and is surrounded by an extended hot X-ray emitting gaseous atmosphere with unusually high central entropy. The hot gas in the plane of rotation of the cool dusty disc has a multi-temperature structure, consistent with ongoing cooling. We conclude that the rotational support of the hot gas is likely capable of altering the multiphase condensation regardless of the $t_{rm cool}/t_{rm ff}$ ratio, which is here relatively high, $sim 40$. However, the measured ratio of cooling time and eddy turnover time around unity ($C$-ratio $approx 1$) implies significant condensation, and at the same time, the constrained ratio of rotational velocity and the velocity dispersion (turbulent Taylor number) ${rm Ta_t} > 1$ indicates that the condensing gas should follow non-radial orbits forming a disc instead of filaments. This is in agreement with hydrodynamical simulations of massive rotating galaxies predicting a similarly extended multiphase disc.



قيم البحث

اقرأ أيضاً

We present a detailed diagnostic study of the observed temperatures of the hot X-ray coronae of early-type galaxies. By extending the investigation carried out in Pellegrini (2011) with spherical models, we focus on the dependence of the energy budge t and temperature of the hot gas on the galaxy structure and internal stellar kinematics. By solving the Jeans equations we construct realistic axisymmetric three-component galaxy models (stars, dark matter halo, central black hole) with different degrees of flattening and rotational support. The kinematical fields are projected along different lines of sight, and the aperture velocity dispersion is computed within a fraction of the circularized effective radius. The model parameters are chosen so that the models resemble real ETGs and lie on the Faber-Jackson and Size-Luminosity relations. For these models we compute T_* (the stellar heating contribution to the gas injection temperature) and T_gm (the temperature equivalent of the energy required for the gas escape). In particular, different degrees of thermalisation of the ordered rotational field of the galaxy are considered. We find that T_* and T_gm can vary only mildly due to a pure change of shape. Galaxy rotation instead, when not thermalised, can lead to a large decrease of T_*; this effect can be larger in flatter galaxies that can be more rotationally supported. Recent temperature measurements T_x, obtained with Chandra, are larger than, but close to, the T_* values of the models, and show a possible trend for a lower T_x in flatter and more rotationally supported galaxies; this trend can be explained by the lack of thermalisation of the whole stellar kinetic energy. Flat and rotating galaxies also show lower L_x values, and then a lower gas content, but this is unlikely to be due to the small variation of T_gm found here for them.
150 - S. Pellegrini 2010
Nuclear hard X-ray luminosities (Lx,nuc) for a sample of 112 early type galaxies within a distance of 67 Mpc are used to investigate their relationship with the central galactic black hole mass Mbh, the inner galactic structure (using the parameters describing its cuspiness), the age of the stellar population in the central galactic region, the hot gas content and the core radio luminosity. Lx,nuc ranges from 10^{38} to 10^{42} erg/s, and the Eddington ratio Lx,nuc/Ledd from 10^{-9} to 10^{-4}. Lx,nuc increases on average with the galactic luminosity Lb and Mbh, with a wide variation by up to 4 orders of magnitude at any fixed Lb>6x10^9 Lb,sun or Mbh>10^7 Msun. This large range should reflect a large variation of the mass accretion rate dotMbh. On the circumnuclear scale, dotMbh at fixed Lb (or Mbh) could vary due to differences in the fuel production rate from the stellar mass return linked to the inner galactic structure; however, dotMbh should vary with cuspiness by a factor exceeding a few only in hot gas poor galaxies and for large differences in the core radius. Lx,nuc does not depend on age, but less luminous nuclei are found among galaxies with a younger stellar component. Lx,nuc is detected both in gas poor and gas rich galaxies, on average increases with the total galactic hot gas cooling rate L_{X,ISM}, but again with a large variation. The lack of a tight relationship between Lx,nuc and the circumnuclear and total gas content can be explained if the gas is heated by black hole feedback, and/or the mass effectively accreted can be largely reduced with respect to that entering the circumnuclear region. Differently from Lx,nuc, the 5 GHz VLA luminosity shows a trend with the inner galactic structure similar to that of the total soft X-ray emission; therefore they could both be produced by the hot gas.
We present the resolved stellar populations in the inner and outer halo of the nearby lenticular galaxy NGC~3115. Using deep HST observations, we analyze stars two magnitudes fainter than the tip of the red giant branch (TRGB). We study three fields along the minor axis of this galaxy, 19, 37 and 54 kpc from its center -- corresponding to 7, 14, 21 effective radii (r_{e}). Even at these large galactocentric distances, all of the fields are dominated by a relatively enriched population, with the main peak in the metallicity distribution decreasing with radius from [Z/H] ~ -0.5 to -0.65. The fraction of metal-poor stars ([Z/H] < -0.95) increases from 17%, at 16-37 kpc, to 28%, at ~54 kpc. We observe a distinct low metallicity population (peaked at [Z/H] ~ -1.3 and with total mass 2*10^{10}M_{odot} ~ 14% of the galaxys stellar mass) and argue that this represents the detection of an underlying low metallicity stellar halo. Such halos are generally predicted by galaxy formation theories and have been observed in several late type galaxies including the Milky Way and M31. The metallicity and spatial distribution of the stellar halo of NGC~3115 are consistent with the galaxys globular cluster system, which has a similar low metallicity population that becomes dominant at these large radii. This finding supports the use of globular clusters as bright chemo-dynamical tracers of galaxy halos. These data also allow us to make a precise measurement of the magnitude of the TRGB, from which we derive a distance modulus of NGC~3115 of 30.05pm0.05pm0.10_{sys} (10.2pm0.2pm0.5_{sys} Mpc).
X-ray emitting gaseous coronae around massive galaxies are a basic prediction of galaxy formation models. Although the coronae around spiral galaxies offer a fundamental test of these models, observational constraints on their characteristics are sti ll scarce. While the presence of extended hot coronae has been established around a handful of massive spiral galaxies, the short X-ray observations only allowed for measurements of the basic characteristics of the coronae. In this work, we utilize deep XMM-Newton observations of NGC 6753 to explore its extended X-ray corona in unprecedented detail. Specifically, we establish the isotropic morphology of the hot gas, suggesting that it resides in hydrostatic equilibrium. The temperature profile of the gas shows a decrease with increasing radius: it drops from $kTapprox0.7$ keV in the innermost parts to $kTapprox0.4$ keV at 50 kpc radius. The temperature map reveals the complex temperature structure of the gas. We study the metallicity distribution of the gas, which is uniform at $Zapprox0.1$ Solar. This value is about an order of magnitude lower than that obtained for elliptical galaxies with similar dark matter halo mass, hinting that the hot gas in spiral galaxies predominantly originates from external gas inflows rather than from internal sources. By extrapolating the density profile of the hot gas out to the virial radius, we estimate the total gas mass and derive the total baryon mass of NGC 6753. We conclude that the baryon mass fraction is $f_{rm b} approx 0.06$, implying that about half of the baryons are missing.
This study aims to probe the thermodynamic properties of the hot intragroup medium (IGM) plasma in the core regions of the NGC 4636 galaxy group by detailed measurements of several emission lines and their relative intensities. We analyzed deep XMM-N ewton Reflection Grating Spectrometer (RGS) data in five adjacent spectral regions in the central parts of the NGC 4636 galaxy group. We examined the suppression of the Fe xvii resonance line (15.01 {AA}) as compared to the forbidden lines of the same ion (17.05 {AA} and 17.10 {AA}). The presence and radial dependence of the cooling flow was investigated through spectral modeling. In addition, a parallel analysis with deep Chandra Advances CCD Imaging Spectrometer (ACIS) data was conducted to gain additional information about the thermodynamical properties of the IGM. We find that the plasma at the group center to the north shows efficient Fe xvii ion resonant scattering, wheras no resonant scattering was detected at the south side. The regions featuring resonant scattering coincide with those embodying large amounts of cool ($kTlesssim0.4$ keV) gas phases, and the spectral imprints of cooling gas with a total mass deposition rate of $sim0.8$ M$_{odot}$ yr$^{-1}$ within the examined region of $2.4^{prime}times 5.0^{prime}$. We interpret the results as possible evidence of asymmetric turbulence distribution in the NGC 4636 IGM: Turbulence dominates the gas dynamics to the south, while collective gas motions characterize the dynamics to the north. X-ray images show imprints of energetic AGN at both sides, yet we find evidence of turbulence heating at the south and gas cooling at the north of the core. We infer that the observed asymmetry may be the result of the specific observation angle to the source, or arise from the turbulence driven by core sloshing at south side.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا