ﻻ يوجد ملخص باللغة العربية
We introduce a few variants on Frank-Wolfe style algorithms suitable for large scale optimization. We show how to modify the standard Frank-Wolfe algorithm using stochastic gradients, approximate subproblem solutions, and sketched decision variables in order to scale to enormous problems while preserving (up to constants) the optimal convergence rate $mathcal{O}(frac{1}{k})$.
We study projection-free methods for constrained Riemannian optimization. In particular, we propose the Riemannian Frank-Wolfe (RFW) method. We analyze non-asymptotic convergence rates of RFW to an optimum for (geodesically) convex problems, and to a
Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper
This paper proposes a new variant of Frank-Wolfe (FW), called $k$FW. Standard FW suffers from slow convergence: iterates often zig-zag as update directions oscillate around extreme points of the constraint set. The new variant, $k$FW, overcomes this
In this paper, we propose approximate Frank-Wolfe (FW) algorithms to solve convex optimization problems over graph-structured support sets where the textit{linear minimization oracle} (LMO) cannot be efficiently obtained in general. We first demonstr
The stochastic Frank-Wolfe method has recently attracted much general interest in the context of optimization for statistical and machine learning due to its ability to work with a more general feasible region. However, there has been a complexity ga