ﻻ يوجد ملخص باللغة العربية
In this paper, we reconsider the unfolding-based technique that we have introduced previously for detecting loops in standard term rewriting. We improve it by guiding the unfolding process, using distinguished positions in the rewrite rules. This results in a depth-first computation of the unfoldings, whereas the original technique was breadth-first. We have implemented this new approach in our tool NTI and compared it to the previous one on a bunch of rewrite systems. The results we get are promising (better times, more successful proofs).
We report on an inversion tool for a class of oriented conditional constructor term rewriting systems. Four well-behaved rule inverters ranging from trivial to full, partial and semi-inverters are included. Conditional term rewriting systems are theo
We present a type system for strategy languages that express program transformations as compositions of rewrite rules. Our row-polymorphic type system assists compiler engineers to write correct strategies by statically rejecting non meaningful compo
A rigid loop is a for-loop with a counter not accessible to the loop body or any other part of a program. Special instructions for rigid loops are introduced on top of the syntax of the program algebra PGA. Two different semantic projections are prov
The notion of compliance in Multiset Rewriting Models (MSR) has been introduced for untimed models and for models with discrete time. In this paper we revisit the notion of compliance and adapt it to fit with additional nondeterminism specific for de
Monads can be interpreted as encoding formal expressions, or formal operations in the sense of universal algebra. We give a construction which formalizes the idea of evaluating an expression partially: for example, 2+3 can be obtained as a partial ev