Transgression of D-branes


الملخص بالإنكليزية

Closed strings can be seen either as one-dimensional objects in a target space or as points in the free loop space. Correspondingly, a B-field can be seen either as a connection on a gerbe over the target space, or as a connection on a line bundle over the loop space. Transgression establishes an equivalence between these two perspectives. Open strings require D-branes: submanifolds equipped with vector bundles twisted by the gerbe. In this paper we develop a loop space perspective on D-branes. It involves bundles of simple Frobenius algebras over the branes, together with bundles of bimodules over spaces of paths connecting two branes. We prove that the classical and our new perspectives on D-branes are equivalent. Further, we compare our loop space perspective to Moore-Segal/Lauda-Pfeiffer data for open-closed 2-dimensional topological quantum field theories, and exhibit it as a smooth family of reflection-positive, colored knowledgable Frobenius algebras.

تحميل البحث