ﻻ يوجد ملخص باللغة العربية
The Dzyaloshinskii-Moriya interaction (DMI), which is essential for the stabilization of topologically non-trivial chiral magnetic textures such as skyrmions, is particularly strong in heterostructures of ultra-thin magnetic materials and heavy elements. We explore by density-functional theory calculations the possibility to modify the magnetic properties at Co/Pt interfaces with chemical disorder. In these systems, we find a particular robustness of the DMI against intermixing. Upon dusting the interface with a third element (all $4d$ transition metals and B, Cu, Au and Bi), a strong reduction of the DMI is predicted. This opens up possibilities to tune the DMI through the degrees of intermixing and dusting.
The Dzyaloshinskii Moriya Interaction (DMI) at the heavy metal (HM) and ferromagnetic metal (FM) interface has been recognized as a key ingredient in spintronic applications. Here we investigate the chemical trend of DMI on the 5d band filling (5d^3~
The possibility of utilizing the rich spin-dependent properties of graphene has attracted great attention in pursuit of spintronics advances. The promise of high-speed and low-energy consumption devices motivates a search for layered structures that
Chiral magnets are an emerging class of topological matter harbouring localized and topologically protected vortex-like magnetic textures called skyrmions, which are currently under intense scrutiny as a new entity for information storage and process
We report a significant Dzyaloshinskii-Moriya interaction (DMI) and perpendicular magnetic anisotropy (PMA) at interfaces comprising hexagonal boron nitride (h-BN) and Co. By comparing the behavior of these phenomena at graphene/Co and h-BN/Co interf
Brillouin light spectroscopy is a powerful and robust technique for measuring the interfacial Dzyaloshinskii-Moriya interaction in thin films with broken inversion symmetry. Here we show that the magnon visibility, i.e. the intensity of the inelastic