ﻻ يوجد ملخص باللغة العربية
Optic flow is two dimensional, but no special qualities are attached to one or other of these dimensions. For binocular disparity, on the other hand, the terms horizontal and vertical disparities are commonly used. This is odd, since binocular disparity and optic flow describe essentially the same thing. The difference is that, generally, people tend to fixate relatively close to the direction of heading as they move, meaning that fixation is close to the optic flow epipole, whereas, for binocular vision, fixation is close to the head-centric midline, i.e. approximately 90 degrees from the binocular epipole. For fixating animals, some separations of flow may lead to simple algorithms for the judgement of surface structure and the control of action. We consider the following canonical flow patterns that sum to produce overall flow: (i) towards flow, the component of translational flow produced by approaching (or retreating from) the fixated object, which produces pure radial flow on the retina; (ii) sideways flow, the remaining component of translational flow, which is produced by translation of the optic centre orthogonal to the cyclopean line of sight and (iii) vergence flow, rotational flow produced by a counter-rotation of the eye in order to maintain fixation. A general flow pattern could also include (iv) cyclovergence flow, produced by rotation of one eye relative to the other about the line of sight. We consider some practical advantages of dividing up flow in this way when an observer fixates as they move. As in some previous treatments, we suggest that there are certain tasks for which it is sensible to consider towards flow as one component and sideways + vergence flow as another.
On the basis of the general character and operation of the process of perception, a formalism is sought to mathematically describe the subjective or abstract/mental process of perception. It is shown that the formalism of orthodox quantum theory of m
This paper presents a computational framework for accurately estimating the disparity map of plenoptic images. The proposed framework is based on the variational principle and provides intrinsic sub-pixel precision. The light-field motion tensor intr
Entropy is a classical measure to quantify the amount of information or complexity of a system. Various entropy-based measures such as functional and spectral entropies have been proposed in brain network analysis. However, they are less widely used
Model-based studies of auditory nerve responses to electrical stimulation can provide insight into the functioning of cochlear implants. Ideally, these studies can identify limitations in sound processing strategies and lead to improved methods for p
The National Institutes of Healths (NIH) Human Biomolecular Atlas Program (HuBMAP) aims to create a comprehensive high-resolution atlas of all the cells in the healthy human body. Multiple laboratories across the United States are collecting tissue s