ﻻ يوجد ملخص باللغة العربية
A family of perfect matchings of $K_{2n}$ is $intersecting$ if any two of its members have an edge in common. It is known that if $mathcal{F}$ is family of intersecting perfect matchings of $K_{2n}$, then $|mathcal{F}| leq (2n-3)!!$ and if equality holds, then $mathcal{F} = mathcal{F}_{ij}$ where $ mathcal{F}_{ij}$ is the family of all perfect matchings of $K_{2n}$ that contain some fixed edge $ij$. In this note, we show that the extremal families are stable, namely, that for any $epsilon in (0,1/sqrt{e})$ and $n > n(epsilon)$, any intersecting family of perfect matchings of size greater than $(1 - 1/sqrt{e} + epsilon)(2n-3)!!$ is contained in $mathcal{F}_{ij}$ for some edge $ij$. The proof uses the Gelfand pair $(S_{2n},S_2 wr S_n)$ along with an isoperimetric method of Ellis.
A family of perfect matchings of $K_{2n}$ is $t$-$intersecting$ if any two members share $t$ or more edges. We prove for any $t in mathbb{N}$ that every $t$-intersecting family of perfect matchings has size no greater than $(2(n-t) - 1)!!$ for suffic
The extremal problems regarding the maximum possible size of intersecting families of various combinatorial objects have been extensively studied. In this paper, we investigate supersaturation extensions, which in this context ask for the minimum num
A family of sets is said to be emph{symmetric} if its automorphism group is transitive, and emph{intersecting} if any two sets in the family have nonempty intersection. Our purpose here is to study the following question: for $n, kin mathbb{N}$ with
We shall be interested in the following Erdos-Ko-Rado-type question. Fix some subset B of [n]. How large a family A of subsets of [n] can we find such that the intersection of any two sets in A contains a cyclic translate (modulo n) of B? Chung, Grah
Let $mathcal{F}$ and $mathcal{G}$ be two $t$-uniform families of subsets over $[k] = {1,2,...,k}$, where $|mathcal{F}| = |mathcal{G}|$, and let $C$ be the adjacency matrix of the bipartite graph whose vertices are the subsets in $mathcal{F}$ and $mat