Dark-ages Reionization and Galaxy Formation Simulation - XV. Stellar evolution and feedback in dwarf galaxies at high redshift


الملخص بالإنكليزية

We directly compare predictions of dwarf galaxy properties in a semi-analytic model (SAM) with those extracted from a high-resolution hydrodynamic simulation. We focus on galaxies with halo masses of 1e9<Mvir/Msol<1e11 at high redshift ($zge5$). We find that, with the modifications previously proposed in Qin et al. (2018), including to suppress the halo mass and baryon fraction, as well as to modulate gas cooling and star formation efficiencies, the SAM can reproduce the cosmic evolution of galaxy properties predicted by the hydrodynamic simulation. These include the galaxy stellar mass function, total baryonic mass, star-forming gas mass and star formation rate at $zsim5-11$. However, this agreement is only possible by reducing the star formation threshold relative to that suggested by local observations. Otherwise, too much star-forming gas is trapped in quenched dwarf galaxies. We further find that dwarf galaxies rapidly build up their star-forming reservoirs in the early universe ($z>10$), with the relevant time-scale becoming significantly longer towards lower redshifts. This indicates efficient accretion in cold mode in these low-mass objects at high redshift. Note that the improved SAM, which has been calibrated against hydrodynamic simulations, can provide more accurate predictions of high-redshift dwarf galaxy properties that are essential for reionization study.

تحميل البحث