ﻻ يوجد ملخص باللغة العربية
We consider two applications of the factorization of infrared dynamics in QED and gravity. The first is a redefinition of the Lorentz transformations that makes them commute with supertranslations. The other is the process of particle creation near a black hole horizon. For the latter we show that the emission of soft particles factors out of the S-matrix in the fixed-background approximation and to leading order in the soft limit. The factorization is implemented by dressing the incoming and outgoing asymptotic states with clouds of soft photons and soft gravitons. We find that while the soft photon cloud has no effect, the soft graviton cloud induces a phase shift in the Bogolyubov coefficients relating the incoming and outgoing modes. However, the flux of outgoing particles, given by the absolute value of the Bogolyubov coefficient, is insensitive to this phase.
The basic characteristics of the covariant chiral current $<J_{mu}>$ and the covariant chiral energy-momentum tensor $<T_{mu u}>$ are obtained from a chiral effective action. These results are used to justify the covariant boundary condition used in
We comment on the consistence of the epsilon anti-symmetric tensor adopted in [R. Banerjee and S. Kulkarni, arXiv:0707.2449] when it is generalized in the general case where $sqrt{-g} eq 1$. It is pointed out that the correct non-minimal consistent
Asymptotic single-particle states in quantum field theories with small departures from Lorentz symmetry are investigated perturbatively with focus on potential phenomenological ramifications. To this end, one-loop radiative corrections for a sample L
Hawking radiation is obtained from the Reissner-Nordstr{o}m blackhole with a global monopole and the Garfinkle-Horowitz-Strominger blackhole falling in the class of the most general spherically symmetric blackholes $(sqrt{-g} eq1)$, using only chiral
Hawking radiation is obtained from anomalies resulting from a breaking of diffeomorphism symmetry near the event horizon of a black hole. Such anomalies, manifested as a nonconservation of the energy momentum tensor, occur in two different forms -- c