ﻻ يوجد ملخص باللغة العربية
We prove that the perverse Leray filtration for the Hitchin morphism is locally constant in families, thus providing some evidence towards the validity of the $P=W$ conjecture due to de Cataldo, Hausel and Migliorini in non Abelian Hodge theory.
We prove that the direct image complex for the $D$-twisted $SL_n$ Hitchin fibration is determined by its restriction to the elliptic locus, where the spectral curves are integral. The analogous result for $GL_n$ is due to P.-H. Chaudouard and G. Laum
We compute the supports of the perverse cohomology sheaves of the Hitchin fibration for $GL_n$ over the locus of reduced spectral curves. In contrast to the case of meromorphic Higgs fields we find additional supports at the loci of reducible spectra
We show that a natural isomorphism between the rational cohomology groups of the two zero-dimensional Hilbert schemes of $n$-points of two surfaces, the affine plane minus the axes and the cotangent bundle of an elliptic curve, exchanges the weight f
We consider categories of generalized perverse sheaves, with relaxed constructibility conditions, by means of the process of gluing $t$-structures and we exhibit explicit abelian categories defined in terms of standard sheaves categories which are eq
Using the work of Guillen and Navarro Aznar we associate to each real algebraic variety a filtered chain complex, the weight complex, which is well-defined up to filtered quasi-isomorphism, and which induces on Borel-Moore homology with Z/2 coefficie