Mixed fractional Brownian motion: a spectral take


الملخص بالإنكليزية

This paper provides yet another look at the mixed fractional Brownian motion (fBm), this time, from the spectral perspective. We derive an approximation for the eigenvalues of its covariance operator, asymptotically accurate up to the second order. This in turn allows to compute the exact $L_2$-small ball probabilities, previously known only at logarithmic precision. The obtained expressions show an interesting stratification of scales, which occurs at certain values of the Hurst parameter of the fractional component. Some of them have been previously encountered in other problems involving such mixtures.

تحميل البحث