ﻻ يوجد ملخص باللغة العربية
In recent years, efficient optimization algorithms for Nonlinear Model Predictive Control (NMPC) have been proposed, that significantly reduce the on-line computational time. In particular, direct multiple shooting and Sequential Quadratic Programming (SQP) are used to efficiently solve Nonlinear Programming (NLP) problems arising from continuous-time NMPC applications. One of the computationally demanding steps for on-line optimization is the computation of sensitivities of the nonlinear dynamics at every sampling instant, especially for systems of large dimensions, strong stiffness, and when using long prediction horizons. In this paper, within the algorithmic framework of the Real-Time Iteration (RTI) scheme based on multiple shooting, an inexact sensitivity updating scheme is proposed, that performs a partial update of the Jacobian of the constraints in the NLP. Such update is triggered by using a Curvature-like Measure of Nonlinearity (CMoN), so that only sensitivities exhibiting highly nonlinear behaviour are updated, thus adapting to system operating conditions and possibly reducing the computational burden. An advanced tuning strategy for the updating scheme is provided to automatically determine the number of sensitivities being updated, with a guaranteed bounded error on the Quadratic Programming (QP) solution. Numerical and control performance of the scheme is evaluated by means of two simulation examples performed on a dedicated implementation. Local convergence analysis is also presented and a tunable convergence rate is proven, when applied to the SQP method.
In this paper we introduce MATMPC, an open source software built in MATLAB for nonlinear model predictive control (NMPC). It is designed to facilitate modelling, controller design and simulation for a wide class of NMPC applications. MATMPC has a num
Owing to the call for energy efficiency, the need to optimize the energy consumption of commercial buildings-- responsible for over 40% of US energy consumption--has recently gained significant attention. Moreover, the ability to participate in the r
The coordination of highly automated vehicles (or agents) in road intersections is an inherently nonconvex and challenging problem. In this paper, we propose a distributed motion planning scheme under reasonable vehicle-to-vehicle communication requi
A stochastic model predictive control (SMPC) approach is presented for discrete-time linear systems with arbitrary time-invariant probabilistic uncertainties and additive Gaussian process noise. Closed-loop stability of the SMPC approach is establish
This paper presents a stochastic, model predictive control (MPC) algorithm that leverages short-term probabilistic forecasts for dispatching and rebalancing Autonomous Mobility-on-Demand systems (AMoD, i.e. fleets of self-driving vehicles). We first