ﻻ يوجد ملخص باللغة العربية
LINC-NIRVANA (LN) is a high resolution, near infrared imager that uses a multiple field-of-view, layer-oriented, multi-conjugate AO system, consisting of four multi-pyramid wavefront sensors (two for each arm of the Large Binocular Telescope, each conjugated to a different altitude). The system employs up to 40 star probes, looking at up to 20 natural guide stars simultaneously. Its final goal is to perform Fizeau interferometric imaging, thereby achieving ELT-like spatial resolution (22.8 m baseline resolution). For this reason, LN is also equipped with a fringe tracker, a beam combiner and a NIR science camera, for a total of more than 250 optical components and an overall size of approximately 6x4x4.5 meters. This paper describes the tradeoffs evaluated in order to achieve the alignment of the system to the telescope. We note that LN is comparable in size to planned ELT instrumentation. The impact of such alignment strategies will be compared and the selected procedure, where the LBT telescope is, in fact, aligned to the instrument, will be described. Furthermore, results coming from early night-time commissioning of the system will be presented.
The full LINC-NIRVANA instrument will be one of the most complex ground-based astronomical systems ever built. It will consist of multiple subsystems, including two multi-conjugate ground layer AO systems (MCAO) that drive the LBT adaptive secondarie
We present descriptions of the alignment and calibration tests of the Pathfinder, which achieved first light during our 2013 commissioning campaign at the LBT. The full LINC-NIRVANA instrument is a Fizeau interferometric imager with fringe tracking a
The super-massive 4 million solar mass black hole (SMBH) SgrA* shows variable emission from the millimeter to the X-ray domain. A detailed analysis of the infrared light curves allows us to address the accretion phenomenon in a statistical way. The a
LINC--NIRVANA (LN) is an MCAO module currently mounted on the Rear Bent Gregorian focus of the Large Binocular Telescope (LBT). It mounts a camera originally designed to realize the interferometric imaging focal station of the telescopes. LN follows
Harmoni is the ELTs first light visible and near-infrared integral field spectrograph. It will provide four different spatial scales, ranging from coarse spaxels of 60 x 30 mas best suited for seeing limited observations, to 4 mas spaxels that Nyquis